Sydney Green

Nuclear Chemistry: radioactive decay MUST follow conservation of mass law

Decay mechanism (process)- always releases energy

- **Alpha particle:** positively charged He atom missing both of its electrons
 - \circ 4- He= α
 - Example: 226-Ra → 222-Rn + 4-He + energy released (gamma particle)
- **Beta particle:** splitting a neutron into a proton and an election
 - Example: $32-P \rightarrow 32-S + \text{electron} + \text{gamma ray}$
- **Gamma ray:** high energy photon of light
 - Example: 238-U → 4-He + 234-Th + 2 gamma ray
- Positron: particle with same mass as the electron but opposite charge
 - Example: 22-Na \rightarrow positron + 22-Ne
- **Electron capture:** one of the inner-orbital electron is captured by the nucleus
 - Example: 201-Hg+ electron \rightarrow 201-Au + gamma ray
- **Decay series:** occurs until a stable nuclide is formed
 - Example: 235-U \rightarrow 207 Pb

Nuclear transformation: the change of one element into another

- Example: $14-N + 2-He \rightarrow 17-0 + 1-H$
- Transuranium elements: elements that have been synthesized

Half-life: The time it takes for a given amount of material to reduce to $\frac{1}{2}$ of the original amount

• Example: 100 million 234-Pa \rightarrow 50 million 234-Pa \rightarrow 25 million 2350-Pa

1.2 minute 1.2 minutes

- Formula: mass remaining/ mass initial = $(1/2)^{(t/T)}$
 - o t= elapsed time
 - o T=half life
- Geiger-Müller counter: measures radioactivity levels by registering ions and electrons produced as a radioactive particle passes though a gas filled chamber

Carbon-14 dating: objects can be dated through radioactivity

• 14-C \rightarrow electron + 14-N

Nuclear Energy

- Artificial Transmutation:
 - o **Fusion:** combining two light nuclei to form heavier nucleus
 - $1-H + 1-H \rightarrow 2-H + positron + gamma ray$

$$1-H + 2-H \rightarrow 3- He + gamma ray$$

3-He + 3- He
$$\rightarrow$$
 2-He + 2 1-H + gamma ray

3- He + 1-H
$$\rightarrow$$
 4-He + positron + gamma ray

- Fission: splitting a heavy nucleus into two nuclei with small mass numbers
 - Neutron + 235-U → 141-Ba + 92-Kr +3 neutrons
- Natural Transmutation:

234-Th
$$\rightarrow$$
 234-Pa + electron

Effects of Radiation:

• Mutate cells (cancer) – damages DNA