Bestsize Cans

The Fresha Drink Company is marketing a new soft drink.

The drink will be sold in a can that holds 200 cm³.

In order to keep costs low, the company wants to use the smallest amount of aluminum.

Find the radius and height of a cylindrical can which holds 200 cm3 and uses the smallest amount of aluminum.

$$V = \pi r^{2}h \qquad 200 = \pi r^{2}h \qquad h = \frac{200}{\pi r^{2}}$$

$$S = 2\pi r^{2} + 2\pi r h$$

$$S = 2\pi r^{2} + 2\pi r \left(\frac{200}{\pi r^{2}}\right)$$

$$S = 2T1^2 + \frac{400 \text{ M/}}{\text{W/}}$$

$$|r^{2}3cm|h = \frac{200}{T3^{2}} = \frac{200}{28} = 7 |h^{2}7cm|$$

Bestsize Cans (continued)

Volume =
$$\pi r^2 h = 200$$

$$h = \frac{200}{\pi r^2}$$

The Fresha Drink Company is marketing a new soft drink.

The drink will be sold in a can that holds 200 cm³.

In order to keep costs low, the company wants to use the smallest amount of aluminum.

Find the radius and height of a cylindrical can which holds 200 cm3 and uses the smallest amount of aluminum.

Calculations
$$S.A = 12\pi r^{2} + 2\pi rh = 2\pi r^{2} + 2\pi r \times 200 = 2\pi r^{2} + 400$$

$$Y = 2 SA - 8\pi + 400 = 225.13 h = 200 = 15.91$$

$$Y = 2.5 SA : 2\pi 25 + 400 = 199.27$$

$$Y = 3 SA : 18\pi + 400 = 189.88 h = 7.07$$

$$Y = 3.5 SA = 24.5\pi + 400 = 191.25$$

$$Smallest S.A : 1s for V = 3 and h = 7.07$$

V=

The Fresha Drink Company is marketing a new soft drink.

The drink will be sold in a can that holds 200 cm³.

In order to keep costs low, the company wants to use the smallest amount of aluminum.

Find the radius and height of a cylindrical can which holds 200 cm3 and uses the smallest amount of aluminum.

	COMMITTER			
Volume =	200 cm3=	mr2 h	Surface Area = 2	πr2+2πrh
2000=r²h \$ 4		,	124	
rez helb	2×2=4 4×	16=64	21(2)2+211(3,	2) ~ 25.1 + 201.1≈ 226.2
r=1, h=64	x = x	64 = 64	2π(i) ² +2π ((64) 26,3+ 402.12 408.4
r=3, h=74	3×3=9 9×9	4=64	2 Tr (3) 4 27	((3) ≈ 56.5 + 134.0 ≈ 190.5
So, rae	hius larger .	-> surface	area smaller!	Now, try find largest
radius	(smallest s	urface area	a)	
r=8, h=1	8x8=64 64 Wait	x 1 = 69 What!?	2TT (8)2+ 2TT	(8) ≈ 402.1+ 50.2 ° 452.3
r=5, h=2,56	5x5=25 25	n256=64	2 TT (5) 2 + 2TT	(12.8) 157.1 + 80.4 1
r= 4 h= 4 Copyright © 2011 by Ma	4×4=16 athematics Assessment	4	$2\pi \left(4\right)^{2}$	(16) € 100.5 + 100.5 ± CCR
Resource Service. All rights $6.6 \text{ ps} = \frac{16}{3}$		× = 64		(32) 226+67 201 201 203

Bestsize Cans (continued)

I kind of did a "guess and check" problem solving method.

At first, I thought that the larger the radius, the smaller the surface area. The goal of this task is to find the smaller the turface area for a can that can hold 200 cm² in volume.

After many "guess and check" trials, I came to a conclusion that a radius of 3 and a height of 7½ in a can, can have a volume of about 201. That means it can hold

200 cm² of liquid. And, it uses the smallest amount of alvumm possible, whenh is about 190,5 cm².

5 5 8
The Fresha Drink Company is marketing a new soft drink.

10×10×10

The drink will be sold in a can that holds 200 cm³.

4×25×10 100 100 250 600 100 250 780

2×2×2×5×5×5

In order to keep costs low, the company wants to use the smallest amount of aluminum.

Find the radius and height of a cylindrical can which holds 200 cm3 and uses the smallest amount of aluminum.

1f r=2	200 = Tr2h > h= 200
SA=2\(\tau(2)^2 + 420= 8\tau+200 ≈ 225.13274	SA= 21212+ Zrerh
1 + r = 3	$SA = 2\pi r^2 + 2\pi r \left(\frac{200}{\pi r^2}\right)$
$SA = 2\pi (3)^2 + \frac{400}{3} = 18\pi + \frac{400}{3} \approx 189.882$	SA = 2 \(\tau^2 + \frac{400}{r} \)
If r=4	
$SA = 2\pi (4)^2 + \frac{400}{4} = 32\pi + 100 \approx 200.530$	
$f = 3.1 SA = 2\pi (3.1)^2 + \frac{400}{3.1} \approx 189.4114$	

3estsize Cans (continued)

$(f_1r=3.2)$ $SA=2\pi(3.2)^2+400/3.2=189.34$
$[f = 3.3]$ $5A = 2n(3.3)^2 + 400/3.3 = 189.636.$
h: 200 = 6.217
Radius = 3.2
Height = 6.217