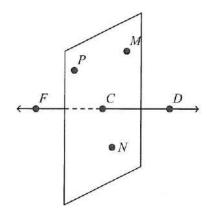

Pre-AP Geometry Trimester Exam Review

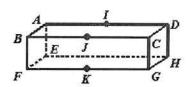

1. What are the names of three collinear points?

- A. Points A, J, and B are collinear.
- B. Points L, J, and K are collinear.
- C. Points D, J, and B are collinear.
- D. Points D, J, and K are collinear.

2. What are the names of four coplanar points?

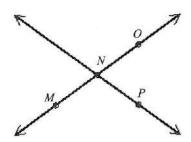
Date:

- A. Points P, M, F, and C are coplanar.
- B. Points F, D, P, and N are coplanar.
- C. Points P, M, N, and C are coplanar.
- D. Points P, M, D, and C are coplanar.
- 3. Name the line and plane shown in the diagram.

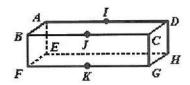


A. \overrightarrow{QP} and plane SR

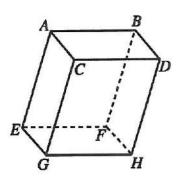
C. \overrightarrow{PQ} and plane SP


B. \overrightarrow{PQ} and plane \overrightarrow{PQS}

- D. line P and plane PQS
- 4. Are points C, G, and H collinear or noncollinear?

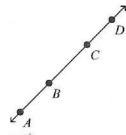


- A. noncollinear
- B. collinear
- C. impossible to tell


5. Are M, N, and O collinear? If so, name the line on which they lie.

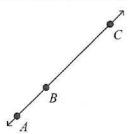
- A. Yes, they lie on the line NP.
- B. Yes, they lie on the line MP.
- C. Yes, they lie on the line MO.
- D. No, the three points are not collinear.
- 6. Name the plane represented by the front of the box.

- A. CAB
- B. GBF
- C. BJC
- D. DBF
- 7. What are the names of three planes that contain point *A*?

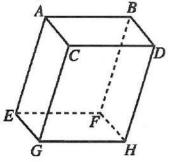


- A. planes ABDC, ABFE, and ACHF
- B. planes ABDC, ABFE, and CDHG
- C. planes CDHG, ABFE, and ACHF
- D. planes ABDC, EFGH, and ACHF

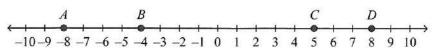
8. Name the ray in the figure.

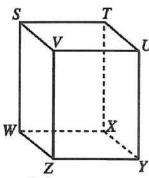


- A. \overline{BA}
- B. AB
- C. AB
- D. \overrightarrow{AB}
- 9. What is the name of the ray that is opposite \overrightarrow{BD} ?



- A. \overline{BD}
- B. \overline{CD}
- C. \overrightarrow{BA}
- D. \overrightarrow{AD}


10. What are the names of the segments in the figure?


- A. The three segments are \overline{AB} , \overline{CA} , and \overline{AC} .
- B. The three segments are \overline{AB} , \overline{BC} , and \overline{BA} .
- C. The three segments are \overline{AB} , \overline{BC} , and \overline{AC} .
- D. The two segments are \overline{AB} and \overline{BC} .
- 11. Name the intersection of plane *ACG* and plane *BCG*.
 - A. \overrightarrow{AC}
 - B. \overrightarrow{BG}
 - C. \overrightarrow{CG}
 - D. The planes need not intersect.
- 13. What plane contains points C, D, and G?

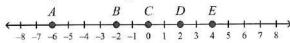
- A. The plane on the bottom of the figure.
- B. The plane on the top of the figure.
- C. The plane on the front of the figure.
- D. The plane that passes at a slant through the figure.
- 14. What is the length of \overline{AC} ?

- A. 13
- B. 16
- C. 15
- D. 3

- A. ŠV
- B. ST
- C. YZ
- D. TX

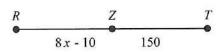
15. If EF = 6 and EG = 21, find the value of FG. The drawing is not to scale.

- A. 17
- B. 15
- C. 14
- D. 6
- 16. If EF = 4x + 15, FG = 39, and EG = 110, find the value of x. The drawing is not to scale.



- A. x = 56
- B. x = 16
- C. x = 14
- D. x = 2
- 17. If EG = 25, and point F is 2/5 of the way between E and G, find the value FG.

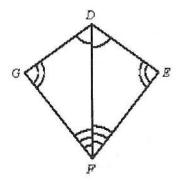
The drawing is not to scale.



- A. 12.5
- B. 10
- C. 15
- D. 20
- 18. What segment is congruent to \overline{AC} ?

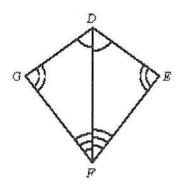


- A. \overline{BD}
- B. \overline{BE}
- C. \overline{CE}
- D. none


19. If Z is the midpoint of \overline{RT} , what are x, RZ, and RT?

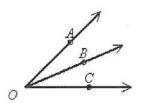
- A. x = 18, RZ = 134, and RT = 268
- B. x = 22, RZ = 150, and RT = 300
- C. x = 20, RZ = 150, and RT = 300
- D. x = 20, RZ = 300, and RT = 150
- 20. If T is the midpoint of \overline{SU} , what are ST, TU, and SU?

- A. ST = 7, TU = 63, and SU = 126
- B. ST = 80, TU = 80, and SU = 160
- C. ST = 18, TU = 18, and SU = 36
- D. ST = 63, TU = 63, and SU = 126
- 21. Complete the statement.

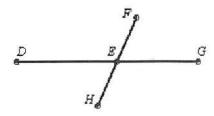


- $\triangle GDF \cong \underline{\quad :}$ A. $\angle DGF$
- B. ∠DEF
- C. ∠EDF
- D. ∠*DFE*

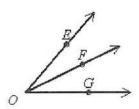
Name:


ID: A

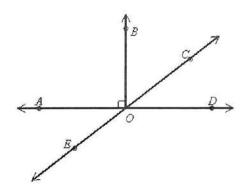
Complete the statement.The drawing is not to scale.


If $m\angle GDF = 54^{\circ}$, then $m\angle EDF = ?$.

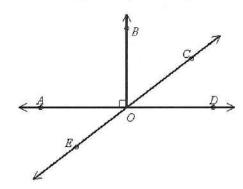
- A. 27°
- B. 54°
- C. 63°
- D. none of these
- 23. If $m\angle AOC = 85^{\circ}$, $m\angle BOC = 2x + 10$, and $m\angle AOB = 4x 15$, find the degree measure of $\angle BOC$ and $\angle AOB$. The diagram is not to scale.



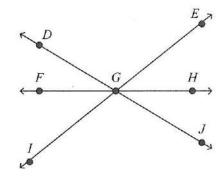
- A. $m\angle BOC = 30^{\circ}$; $m\angle AOB = 55^{\circ}$
- B. $m\angle BOC = 40^{\circ}$; $m\angle AOB = 45^{\circ}$
- C. $m\angle BOC = 45^{\circ}$; $m\angle AOB = 40^{\circ}$
- D. $m\angle BOC = 55^{\circ}$; $m\angle AOB = 30^{\circ}$


24. If $m\angle DEF = 119$, then what are $m\angle FEG$ and $m\angle HEG$? The diagram is not to scale.

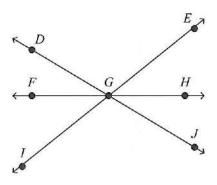
- A. $m \angle FEG = 71$, $m \angle HEG = 119$
- B. $m \angle FEG = 119$, $m \angle HEG = 61$
- C. $m \angle FEG = 61$, $m \angle HEG = 129$
- D. $m \angle FEG = 61$, $m \angle HEG = 119$
- 25. If $m\angle EOF = 26$ and $m\angle FOG = 38$, then what is the measure of $\angle EOG$? The diagram is not to scale.



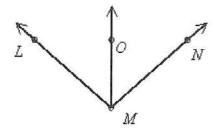
- A. 64
- B. 12
- C. 52
- D. 76
- 26. Name an angle supplementary to $\angle COD$.


- A. ∠BOD
- B. ∠COA
- C. ZAOE
- D. ∠COB

27. Name an angle complementary to $\angle BOC$.


- A. ∠DOE
- B. ∠BOE
- C. ∠BOA
- D. ∠COD

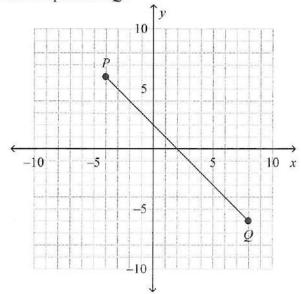
28. Name an angle vertical to $\angle FGI$.


- A. ∠*IGH*
- B. ∠DFG
- C. ∠HGE
- D. ∠HGJ

29. Name an angle adjacent to $\angle DGE$.

- A. ∠FGI
- B. ∠EGH
- C. ∠HGJ
- D. ∠JGI
- Supplementary angles are two angles whose measures have a sum of _____.
 Complementary angles are two angles whose measures have a sum of _____.
 - A. 90; 180
 - B. 90; 45
 - C. 180; 360
 - D. 180; 90
- 31. The complement of an angle is 53°. What is the measure of the angle?
 - A. 37°
 - B. 137°
 - C. 47°
 - D. 127°
- 32. $\angle DFG$ and $\angle JKL$ are complementary angles. $m\angle DFG = x + 2$, and $m\angle JKL = x 4$. Find the measure of each angle.
 - A. $\angle DFG = 48$, $\angle JKL = 42$
 - B. $\angle DFG = 48$, $\angle JKL = 52$
 - C. $\angle DFG = 46$, $\angle JKL = 44$
 - D. $\angle DFG = 46$, $\angle JKL = 54$

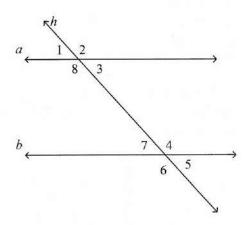
- 33. Angle A and angle B are a linear pair. If $m\angle A = 4m\angle B$, find $m\angle A$ and $m\angle B$.
 - A. 144, 36
 - B. 36, 144
 - C. 72, 18
 - D. 18, 72
- 34. \overrightarrow{MO} bisects $\angle LMN$, $m\angle LMN = 5x 22$, $m\angle LMO = x + 31$. Find $m\angle NMO$. The diagram is not to scale.



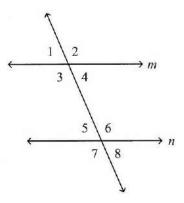
- A. 88.5
- B. 64
- C. 59
- D. 44.25
- 35. Which point is the midpoint of \overline{AB} ?

- A. -0.5
- B. 2
- C. 1
- D. 3

36. Find the midpoint of \overline{PQ} .

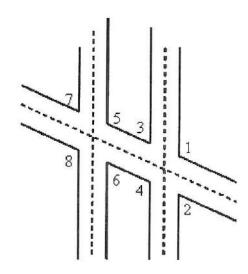


- A. (2,0)
- B. (2, 1)
- C. (1, 1)
- D. (1,0)
- 37. Find the coordinates of the midpoint of the segment whose endpoints are H(6, 4) and K(2, 8).
 - A. (4, 4)
 - B. (2, 2)
 - C. (8, 12)
 - D. (4, 6)
- 38. M(7, 5) is the midpoint of \overline{RS} . The coordinates of S are (8, 7). What are the coordinates of R?
 - A. (9, 9)
 - B. (6, 3)
 - C. (14, 10)
 - D. (7.5, 6)
- 39. Find the distance between points P(8, 2) and Q(3, 8) to the nearest tenth.
 - A. 11
 - B. 7.8
 - C. 61
 - D. 14.9

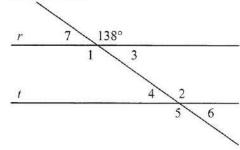

- 40. The Frostburg-Truth bus travels from Frostburg Mall through the city's center to Sojourner Truth Park. The mall is 2 miles west and 2 miles south of the city's center. Truth Park is 4 miles east and 3 miles north of the city's center. How far is it from Truth Park to the mall to the nearest tenth of a mile?
 - A. 2.8 miles
 - B. 2.2 miles
 - C. 7.8 miles
 - D. 5 miles
- 41. Ken is adding a ribbon border to the edge of his kite. Two sides of the kite measure 9.5 inches, while the other two sides measure 17.8 inches. How much ribbon does Ken need?
 - A. 45.1 in.
 - B. 27.3 in.
 - C. 54.6 in.
 - D. 36.8 in.
- 42. Jose wants to put a fence around his rectangular garden. His garden measures 33 feet by 39 feet.

 The garden has a path around it that is 3 feet wide. How much fencing material does Jose need to enclose the garden and path?
 - A. 120 ft
 - B. 156 ft
 - C. 168 ft
 - D. 84 ft

Use the diagram to find the following.

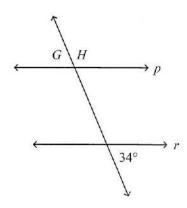


- 43. Identify a pair of alternate exterior angles.
 - A. $\angle 1$ and $\angle 5$
 - B. $\angle 8$ and $\angle 4$
 - C. ∠2 and ∠5
 - D. ∠1 and ∠8
- 44. What are three pairs of corresponding angles?
 - A. angles 1 & 2, 3 & 8, and 4 & 7
 - B. angles 3 & 4, 7 & 8, and 1 & 6
 - C. angles 1 & 7, 2 & 4, and 6 & 7
 - D. angles 1 & 7, 8 & 6, and 2 & 4
- 45. What is the relationship between ∠4 and ∠5?

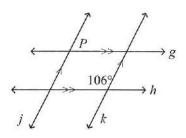


- A. corresponding angles
- B. same-side interior angles
- C. alternate interior angles
- D. alternate exterior angles

This diagram of airport runway intersections shows two parallel runways. A taxiway crosses both runways.

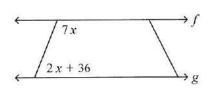


- 46. If ∠8 measures 127, what is the sum of the measures of ∠1 and ∠4?
 - A. 254
 - B. 307
 - C. 127
 - D. 106
- 47. Line r is parallel to line t. Find $m \angle 6$. The diagram is not to scale.

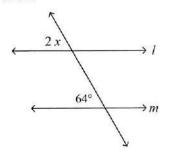


- A. 32
- B. 138
- C. 142
- D. 42

48. Find $m \angle G$. $p \parallel r$. The diagram is not to scale.

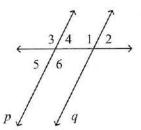


- A. 34
- B. 110
- C. 104
- D. 146
- 49. Find $m \angle P$. The diagram is not to scale.

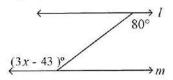


- A. 106
- B. 74
- C. 64
- D. 84

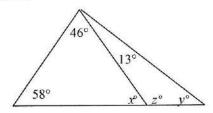
50. The expressions in the figure below represent the measures of two angles. Find the value of x. $f \parallel g$. The diagram is not to scale.



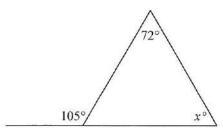
- A. 15
- B. 17
- C. -16
- D. 16
- 51. Find the value of x. $l \parallel m$. The diagram is not to scale.



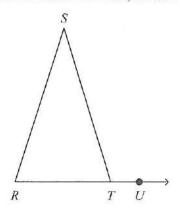
- A. 148
- B. 116
- C. 64
- D. 32


52. Find the value of x for which p is parallel to q, if $m\angle 1 = (9x)$ and $m\angle 3 = 117$. The diagram is not to scale.

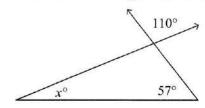
- A. 108
- B. 13
- C. 117
- D. 126
- 53. Find the value of x for which l is parallel to m. The diagram is not to scale.



- A. 100
- B. 80
- C. 123
- D. 41
- 54. Find the values of x, y, and z. The diagram is not to scale.

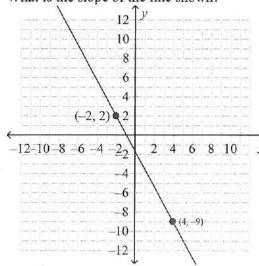

- A. x = 63, y = 104, z = 76
- B. x = 76, y = 63, z = 104
- C. x = 63, y = 76, z = 104
- D. x = 76, y = 104, z = 63

55. Find the value of x. The diagram is not to scale.

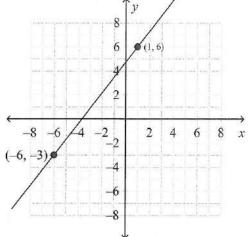


- A. 33
- B. 162
- C. 147
- D. 75
- 56. Find the value of x. The diagram is not to scale.

Given: $\angle SRT \cong \angle STR$, $m\angle SRT = 28$, $m\angle STU = 2x$

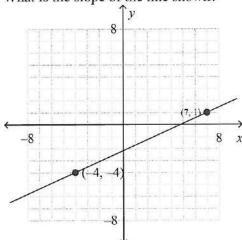


- A. 28
- B. 30
- C. 14
- D. 76
- 57. Find the value of x. The diagram is not to scale.

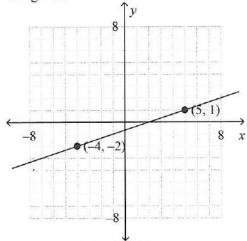


- A. 33
- B. 70
- C. 23
- D. 13

58. What is the slope of the line shown?



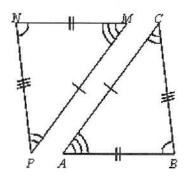
- A. $\frac{6}{11}$
- B. $-\frac{6}{11}$
- C. $-\frac{11}{6}$
- D. $\frac{11}{6}$
- 59. What is the slope of the line shown?


- A. $-\frac{7}{9}$
- B. $\frac{9}{7}$
- C. $\frac{7}{9}$
- D. $-\frac{9}{7}$

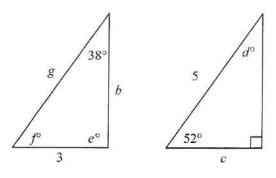
60. What is the slope of the line shown?

- A. $\frac{13}{6}$
- B. $\frac{5}{12}$
- C. $\frac{5}{11}$
- D. $\frac{11}{5}$

61. What is an equation in slope-intercept form for the line given?



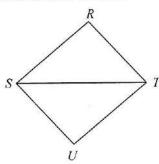
- A. y = 1/3(x) + (-2/3)
- B. y = 3(x) + (-10/3)
- C. y = 3(x) + (-2/3)
- D. y = 1/3(x) (-4)
- 62. Write the equation for the vertical line that contains point E(-7, 7).
 - A. y = 7
 - B. x = -7
 - C. y = -7
 - D. x = 7
- 63. Write the equation for the horizontal line that contains point G(3, 4).
 - A. x = 4
 - B. y = 4
 - C. y = 3
 - D. x = 3
- 64. Is the line through points P(3, -5) and Q(1, 4) parallel to the line through points R(-1, 1) and S(3, -3)? Explain.
 - A. Yes; the lines have equal slopes.
 - B. No; the lines have unequal slopes.
 - C. No; one line has zero slope, the other has no slope.
 - D. Yes; the lines are both vertical.
- 65. What is the equation in point-slope form for the line parallel to y = 5x 4 that contains P(-6, 1)?
 - A. x-1=-5(y+6)
 - B. y + 1 = 5(x + 6)
 - C. y-1=-5(x+6)
 - D. y-1=5(x+6)


- 66. What is the equation in point-slope form for the line parallel to y = -2x + 10 that contains J(6, 8)?
 - A. y 8 = -2(x 6)
 - B. x 8 = 2(y 6)
 - C. y 8 = 2(x 6)
 - D. y + 8 = -2(x 6)

- 67. What is an equation in point-slope form for the line perpendicular to y = 2x + 13 that contains (8, -4)?
 - A. $y+4=-\frac{1}{2}(x-8)$
 - B. x + 4 = 2(y 8)
 - C. y + 4 = 2(x 8)
 - D. $y + 8 = -\frac{1}{2}(x 4)$
- 68. If BCDE is congruent to OPQR, then \overline{DE} is congruent to $\underline{?}$.
 - A. \overline{PQ}
 - B. \overline{OR}
 - C. \overline{OP}
 - D. \overline{QR}

69. ∠*ABC* ≅ __?__

- A. ∠PMN
- B. ∠NPM
- C. ∠NMP
- D. ∠MNP
- 70. Given $\triangle QRS \cong \triangle TUV$, QS = 3v + 2, and TV = 7v 6, find the length of QS and TV.
 - A. 2
 - B. 9
 - C. 8
 - D. 20
- 71. Given $\triangle ABC \cong \triangle PQR$, $m \angle B = 3v + 4$, and $m \angle Q = 8v 6$, find $m \angle B$ and $m \angle Q$.
 - A. 22
 - B. 11
 - C. 10
 - D. 25
- 72. The two triangles are congruent as suggested by their appearance. Find the value of c. The diagrams are not to scale.



- A. 4
- B. 5
- C. 3
- D. 38

73. Justify the last two steps of the proof.

Given: $\overline{RS} \cong \overline{UT}$ and $\overline{RT} \cong \overline{US}$

Prove: $\Delta RST \cong \Delta UTS$

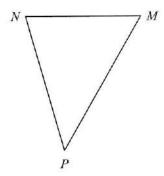
Proof:

$$1.\overline{RS} \cong \overline{UT}$$

1. Given

$$2.\overline{RT}\cong \overline{US}$$

2. Given

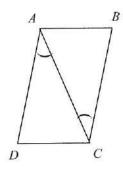

$$3. \overline{ST} \cong \overline{TS}$$

3. _ ?_

4.
$$\Delta RST \cong \Delta UTS$$

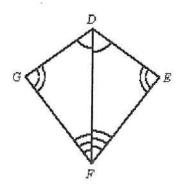

4. __?_

- A. Symmetric Property of ≅; SSS
- B. Reflexive Property of ≅; SAS
- C. Reflexive Property of ≅; SSS
- D. Symmetric Property of ≅; SAS
- 74. Name the angle included by the sides \overline{PN} and \overline{NM} .



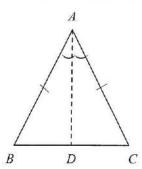
- A. $\angle N$
- B. ∠*P*
- C. $\angle M$
- D. none of these

75. What other information do you need in order to prove the triangles congruent using the SAS Congruence Postulate?



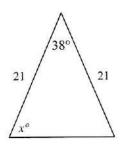
- A. $\angle BAC \cong \angle DAC$
- B. $AC \perp BD$
- C. $\angle CBA \cong \angle CDA$
- D. $AC \cong BD$
- 76. What else must you know to prove the triangles congruent by ASA? By SAS?

- A. $\angle ACD \cong \angle CAB; \overline{AB} \cong \overline{CD}$
- B. $\angle ACD \cong \angle CAB; \overline{AD} \cong \overline{BC}$
- C. $\angle ADC \cong \angle CAB; \overline{AD} \cong \overline{BC}$
- D. $\angle ACD \cong \angle CAB; \overline{AD} \cong \overline{AC}$


77. From the information in the diagram, can you prove $\Delta FDG \cong \Delta FDE$? Explain.

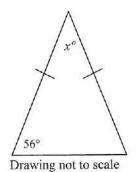
- A. yes, by ASA
- B. yes, by AAA
- C. yes, by SAS
- D. no
- 78. Supply the reasons missing from the proof shown below.

Given: $\overline{AB} \cong \overline{AC}$, $\angle BAD \cong \angle CAD$

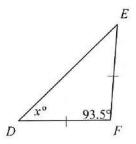

Prove: \overline{AD} bisects \overline{BC}

Statements	Reasons
$1. \overline{AB} \cong \overline{AC}$	1. Given
2. ∠BAD ≅ ∠CA	D 2. Given
$3. \overline{AD} \cong \overline{AD}$	3. Reflexive Property
$4. \Delta BAD \cong \Delta CAL$	4. <u>?</u>
$5. \overline{BD} \cong \overline{CD}$	5?
6. \overline{AD} bisects \overline{BC}	6. Definition of segment bisector

- A. ASA; Corresp. parts of $\cong \Delta$ are \cong .
- C. SSS; Reflexive Property
- B. SAS; Reflexive Property
- D. SAS; Corresp. parts of $\cong \Delta$ are \cong .


79. What is the value of x?

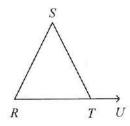
Drawing not to scale


- A. 71°
- B. 142°
- C. 152°
- D. 76°

80. What is the value of x?

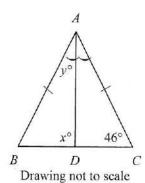
- A. 68°
- B. 62°
- C. 112°
- D. 124°

81. What is the value of x?



Drawing not to scale

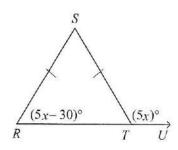
- A. 86.5°
- B. 43.25°
- C. 133.25°
- D. 46.75°


82. Find the value of x. The diagram is not to scale.

Given: $\overline{RS} \cong \overline{ST}$, $m \angle RST = 7x - 54$, $m \angle STU = 8x$

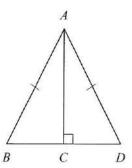
- A. 14
- B. 152
- C. 16
- D. 19

83. Find the values of x and y.

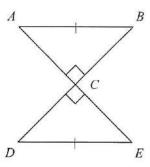

A.
$$x = 44$$
, $y = 46$

B.
$$x = 46, y = 44$$

C.
$$x = 90, v = 44$$

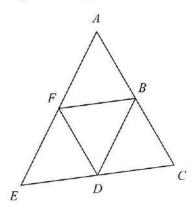

D.
$$x = 90, y = 46$$

84. Find the value of x. The diagram is not to scale.

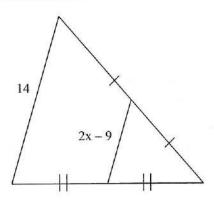


- A. x = 60
- B. x = 21
- C. x = 15
- D. none of these

85. Is there enough information to conclude that the two triangles are congruent? If so, what is a correct congruence statement?

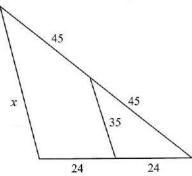


- A. Yes; $\triangle CAB \cong \triangle DAC$.
- B. Yes; $\triangle ACB \cong \triangle ACD$.
- C. Yes; $\triangle ABC \cong \triangle ACD$.
- D. No, the triangles cannot be proven congruent.
- 86. \overline{RQ} is a perpendicular bisector to \overline{PS} at Q between P and S. $\angle SPR \cong \angle PSR$. By which of the five congruence statements, HL, AAS, ASA, SAS, and SSS, can you immediately conclude that $\Delta PQR \cong \Delta SQR$?
 - A. HL, AAS, ASA, SAS, and SSS
 - B. HL and AAS
 - C. HL, AAS, and ASA
 - D. HL and ASA
- 87. What additional information will allow you to prove the triangles congruent by the HL Theorem?

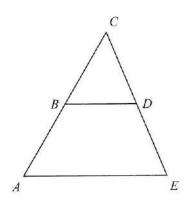


- A. $\angle A \cong \angle E$
- B. $m \angle BCE = 90$
- C. $\overline{AC} \cong \overline{DC}$
- D. $\overline{AC} \cong \overline{BD}$

88. Points B, D, and F are midpoints of the sides of $\triangle ACE$. EC = 30 and DF = 17. Find AC. The diagram is not to scale.

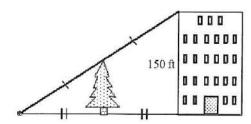


- A. 60
- B. 30
- C. 34
- D. 8.5
- 89. Find the value of x.

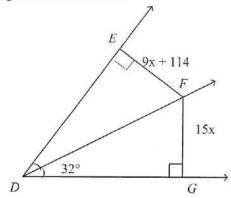


- A. 7
- B. 11.5
- C. 8
- D. 10

90. Find the value of x. The diagram is not to scale.

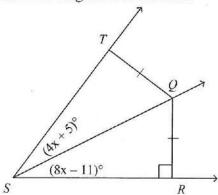


- A. 90
- B. 70
- C. 35
- D. 48
- 91. B is the midpoint of \overline{AC} , D is the midpoint of \overline{CE} , and AE = 21. Find BD. The diagram is not to scale.

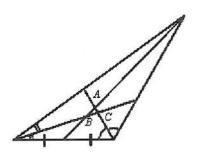


- A. 42
- B. 21
- C. 11.5
- D. 10.5

92. Use the information in the diagram to determine the height of the tree. The diagram is not to scale.



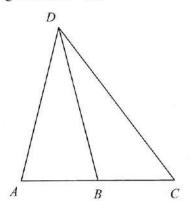
- A. 75 ft
- B. 150 ft
- C. 35.5 ft
- D. 37.5 ft
- 93. \overrightarrow{DF} bisects $\angle EDG$. Find the value of x. The diagram is not to scale.


- A. 285
- B. $\frac{4}{19}$
- C. 32
- D. 19

94. Q is equidistant from the sides of $\angle TSR$. Find $m\angle RST$. The diagram is not to scale.

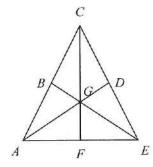
- A. 21
- B. 42
- C. 4
- D. 8
- 95. Find the circumcenter of $\triangle EFG$ with E(4, 4), F(4, 2), and G(8, 2).
 - A. (6, 3)
 - B. (4, 2)
 - C. (4,4)
 - D. (3, 6)
- 96. Where is the circumcenter of any given triangle?
 - A. the point of concurrency of the altitudes of the triangle
 - B. the point of concurrency of the perpendicular bisectors of the sides of the triangle
 - C. the point of concurrency of the bisectors of the angles of the triangle
 - D. the point of concurrency of the medians of the triangle

97. Name the point of concurrency of the angle bisectors.

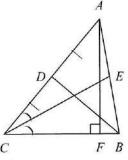

A. A

B. *B*

C. C

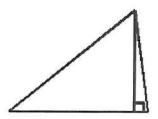

D. not shown

98. Find the length of \overline{AB} , given that \overline{DB} is a median of the triangle and AC = 26.

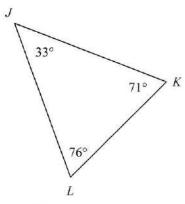


- A. 13
- B. 26
- C. 52
- D. not enough information

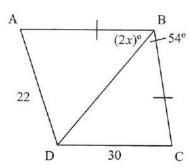
99. In $\triangle ACE$, G is the centroid and BE = 18. Find BG and GE.



- A. BG = 6, GE = 12
- B. BG = 12, GE = 6
- C. $BG = 4\frac{1}{2}$, $GE = 13\frac{1}{2}$
- D. BG = 9, GE = 9
- 100. Name a median for $\triangle ABC$.

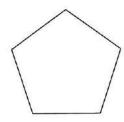

- A. \overline{AD}
- B. \overline{CI}
- C. \overline{AB}
- D. \overline{BI}

101. What is the name of the segment inside the large triangle?

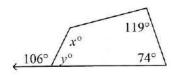


- A. altitude
- B. perpendicular bisector
- C. angle bisector
- D. median
- 102. For a triangle, list the respective names of the points of concurrency of
 - · perpendicular bisectors of the sides
 - · bisectors of the angles
 - medians
 - · lines containing the altitudes
 - A. incenter circumcenter centroid orthocenter
 - B. circumcenter incenter centroid orthocenter
 - C. circumcenter incenter orthocenter centroid
 - D. incenter circumcenter orthocenter centroid
- 103. What is the negation of this statement? Miguel has three cats.
 - A. Miguel does not like cats.
 - B. The cat has three owners.
 - C. Miguel does not have three cats.
 - D. Miguel has no cats.

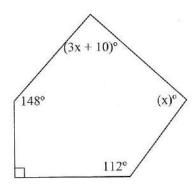
104. List the sides in order from shortest to longest. The diagram is not to scale.



- A. \overline{JK} , \overline{LJ} , \overline{LK}
- B. $\overline{LK}, \overline{LJ}, \overline{JK}$
- C. $\overline{JK}, \overline{LK}, \overline{LJ}$
- D. $\overline{LK}, \overline{JK}, \overline{LJ}$
- 105. Two sides of a triangle have lengths 10 and 15. What must be true about the length of the third side?
 - A. less than 25
 - B. less than 10
 - C. less than 15
 - D. less than 5
- 106. What is the range of possible values for x? The diagram is not to scale.

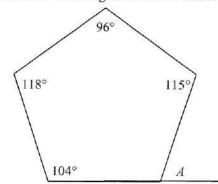

- A. 0 < x < 54
- B. 0 < x < 108
- C. 0 < x < 27
- D. 27 < x < 180

107. Find the sum of the measures of the angles of the figure.



- A. 1260
- B. 900
- C. 540
- D. 720
- 108. The sum of the angle measures of a polygon with *s* sides is 2340. Find *s*.
 - A. 13
 - B. 14
 - C. 17
 - D. 15
- 109. What is the measure of one angle in a regular 30-gon?
 - A. 192
 - B. 84
 - C. 168
 - D. 5040
- 110. A road sign is in the shape of a regular pentagon. What is the measure of each angle on the sign? Round to the nearest tenth.
 - A. 252
 - B. 540
 - C. 54
 - D. 108

111. Find the missing values of the variables. The diagram is not to scale.



- A. x = 74, y = 103
- B. x = 74, y = 93
- C. x = 93, y = 74
- D. x = 103, y = 119
- 112. Find the value of x. The diagram is not to scale.

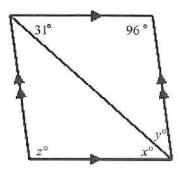
- A. 90
- B. 45
- C. 35
- D. 145

113. Find $m \angle A$. The diagram is not to scale.

- A. 107
- B. 117
- C. 63
- D. 73

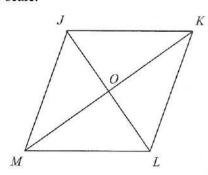
114. The sum of the measures of two exterior angles of a triangle is 264. What is the measure of the third exterior angle?

- A. 96
- B. 84
- C. 106
- D. 86

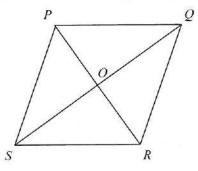

115. How many sides does a regular polygon have if each exterior angle measures 30?

- A. 15 sides
- B. 12 sides
- C. 14 sides
- D. 11 sides

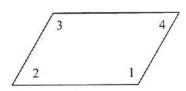
116. A nonregular hexagon has five exterior angle measures of 55, 58, 69, 57, and 55. What is the measure of the interior angle adjacent to the sixth exterior angle?


- A. 104
- B. 66
- C. 114
- D. 124

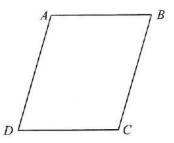
117. Find the values of the variables in the parallelogram. The diagram is not to scale.


- A. x = 53, y = 31, z = 96
- B. x = 53, y = 53, z = 127
- C. x = 31, y = 53, z = 96
- D. x = 31, y = 53, z = 127

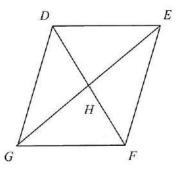
118. In the parallelogram, $m \angle KLO = 78$ and $m \angle MLO = 42$. Find $m \angle KJM$. The diagram is not to scale.



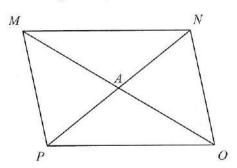
- A. 110
- B. 120
- C. 78
- D. 60


119. In the parallelogram, $m\angle QRP = 32$ and $m\angle PRS = 84$. Find $m\angle PQR$. The diagram is not to scale.

- A. 84
- B. 116
- C. 32
- D. 64
- 120. For the parallelogram, if $m\angle 2 = 4x 20$ and $m\angle 4 = 3x 11$, find $m\angle 1$. The diagram is not to scale.

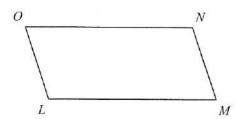


- A. 9
- B. 16
- C. 164
- D. 174
- 121. ABCD is a parallelogram. If $m\angle CDA = 63$, then $m\angle ABC = \underline{?}$. The diagram is not to scale.

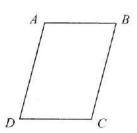


- A. 117
- B. 127
- C. 78
- D. 63

122. In parallelogram DEFG, DH = x + 2, HF = 2y, GH = 4x - 3, and HE = 5y + 1. Find the values of x and y. The diagram is not to scale.

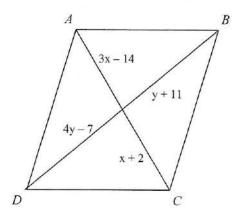


- A. x = 8, y = 5
- B. x = 5, y = 8
- C. x = 4, y = 6
- D. x = 6, y = 4
- 123. Find AM in the parallelogram if PN = 15 and AO = 6. The diagram is not to scale.

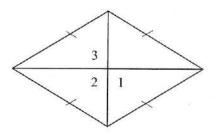


- A. 12
- B. 6
- C. 15
- D. 7.5

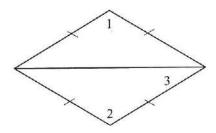
124. LMNO is a parallelogram. If NM = x + 5 and OL = 2x + 3, find the value of x and then find NM and OL.



- A. x = 4, NM = 9, OL = 9
- B. x = 2, NM = 7, OL = 7
- C. x = 2, NM = 9, OL = 7
- D. x = 4, NM = 7, OL = 9
- 125. If $m\angle B = m\angle D = 46$, find $m\angle C$ so that quadrilateral ABCD is a parallelogram. The diagram is not to scale.


- A. 46
- B. 92
- C. 134
- D. 268

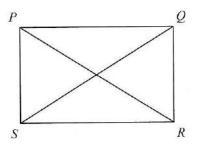
126. Find values of x and y for which ABCD must be a parallelogram. The diagram is not to scale.


- A. x = 8, y = 6
- B. x = 6, y = 8
- C. x = 8, y = 17
- D. x = 8, y = 10
- 127. In the rhombus,

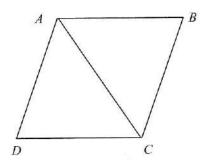
 $m\angle 1 = 15x$, $m\angle 2 = x + y$, and $m\angle 3 = 30z$. Find the value of each variable. The diagram is not to scale.

- A. x = 12, y = 84, z = 6
- B. x = 12, y = 174, z = 3
- C. x = 6, y = 84, z = 3
- D. x = 6, y = 174, z = 6

128. In the rhombus, $m \angle 1 = 140$. What are $m \angle 2$ and $m \angle 3$? The diagram is not to scale.

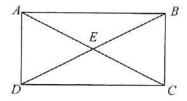


- A. $m \angle 2 = 40$, $m \angle 3 = 70$
- B. $m \angle 2 = 140$, $m \angle 3 = 20$
- C. $m \angle 2 = 40, \ m \angle 3 = 20$
- D. $m\angle 2 = 140$, $m\angle 3 = 70$
- 129. Find the measure of the numbered angles in the rhombus. The diagram is not to scale.

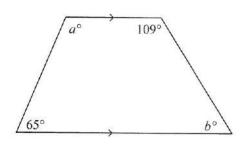


- A. $m \angle 1 = 90$, $m \angle 2 = 24$, and $m \angle 3 = 78$
- B. $m\angle 1 = 90$, $m\angle 2 = 66$, and $m\angle 3 = 24$
- C. $m \angle 1 = 90$, $m \angle 2 = 24$, and $m \angle 3 = 24$
- D. $m \angle 1 = 90$, $m \angle 2 = 24$, and $m \angle 3 = 66$
- 130. DEFG is a rectangle. DF = 5x 3 and EG = x + 5. Find the value of x and the length of each diagonal.
 - A. x = 1, DF = 6, EG = 6
 - B. x = 2, DF = 7, EG = 12
 - C. x = 2, DF = 6, EG = 6
 - D. x = 2, DF = 7, EG = 7

131. In rectangle PQRS, PR = 18x - 28 and QS = x + 380. Find the value of x and the length of each diagonal.

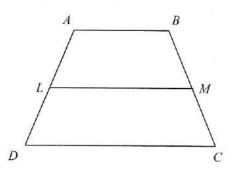


- A. x = 24, PR = 202, QS = 202
- B. x = 12, PR = 392, QS = 392
- C. x = 24, PR = 404, QS = 404
- D. x = 25, PR = 422, QS = 422
- 132. In quadrilateral *ABCD*, $m\angle ACD = 2x + 4$ and $m\angle ACB = 5x 8$. For what value of x is *ABCD* a rhombus?

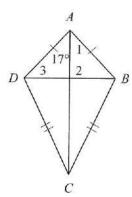


- A. 3
- B. 4
- C. 5
- D. 6

133. In quadrilateral ABCD, AE = x + 6 and BE = 3x - 18. For what value of x is ABCD a rectangle?

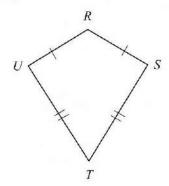


- A. 18
- B. 12
- C. 16
- D. 14
- 134. Find the values of *a* and *b*. The diagram is not to scale.

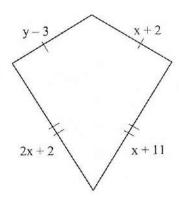


- A. a = 115, b = 71
- B. a = 115, b = 65
- C. a = 109, b = 71
- D. a = 109, b = 65
- 135. $\angle J$ and $\angle M$ are base angles of isosceles trapezoid JKLM. If $m\angle J = 18x + 8$, and $m\angle M = 11x + 15$, find $m\angle K$.
 - A. 1
 - B. 154
 - C. 77
 - D. 26

136. \overline{LM} is the midsegment of $\square ABCD$. AB = x + 8, LM = 4x + 3, and DC = 243. What is the value of x?

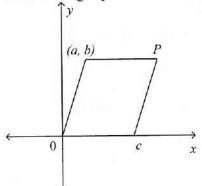


- A. 43
- B. 35
- C. 286
- D. 39
- 137. Find $m \angle 1$ and $m \angle 3$ in the kite. The diagram is not to scale.



- A. $m \angle 1 = 17, m \angle 3 = 73$
- B. $m \angle 1 = 17, m \angle 3 = 17$
- C. $m \angle 1 = 73, m \angle 3 = 17$
- D. $m \angle 1 = 73, m \angle 3 = 73$

138. $m\angle R = 120$ and $m\angle S = 110$. Find $m\angle T$. The diagram is not to scale.



- A. 60
- B. 10
- C. 110
- D. 20
- 139. Find the values of the variables and the lengths of the sides of this kite.

- A. x = 9, y = 14; 11, 20
- B. x = 14, y = 9; 11, 11
- C. x = 14, y = 9; 6, 16
- D. x = 9, y = 14; 6, 16

140. For the parallelogram, find coordinates for *P* without using any new variables.

- A. (a-c,c)
- B. (c, a)
- C. (a + c, b)
- D. (c, b)