Review questions for Solar System and the Universe answer

- 1) distance between Earth and Sun. 1.5X10¹¹ meters
- 2) distance light travels in 1 year 1 parsec= 3.3 ly
 - 3) "Sun-centered universe" copernicus
 - 4) "Earth-centered universe" aristotle
 - 5) spots on Sun, craters on the Moon, 4 moons orbiting Jupiter
 - 6) elliptical
 - 7) 13.6 BYA 8) 5 BYA
 - 9) 1) nebula 2) protostar 3) star
 - 4) brown dwarf 5) Main Sequence 6) red giant 7) white dwarf8) giant main sequence 9) super giant 10) supernova 11) neutron star 12)

black hole

10) Mercury = Me Venus = V Earth = E Mars = M Jupiter = J
Saturn = S Uranus = U
Neptune = N

Me	V	E	M	J	S	U	N	
Me	V	E	M	J	S	U	N	
Me	V	E	M	M	J	S	U	N

11) optional: spherical, in orbit around Sun, "cleared neighborhood of debris"

12) a)
$$T^2 = R^3$$
 b) $Fg = G M_1 M_2$
time yrs r^2

c)
$$r_s = \underline{2GM}$$

dist AU

- 13) XXXXX
- 14) universe originally very small point that exploded outward 13.6 BYA
- 15) size [mass]
- 16) and temperature [color]
- 17) analyze small sample of data and apply to entire population

- 18) ½ angle star "moves"; closer objects appear to move further than distance objects.
- 19) The H-R Diagram

20) Red, blue

- 21) Sun
- 22) Satisfy relationship of luminosity and mass Relationship given by L = Lo[M/Mo]^{3.5}
- 23) Fusing hydrogen into helium in core; stable gravity balances pressure keep stars stable, when pressure increases, star expands and cools, when pressure decreases, stars collapse from gravity
- 24) spiral, elliptical, irregular
- 25) dwarf elliptical
- 26) spiral, supermassive black hole at center
- supermassive star collapsed at end of life, so dense light cannot escape.
- 28) Yes and accelerating apart
- 29) As stars move away, wavelength appears longer; as stars approach, wavelength appears shorter

30)
$$F_g = [G M_1 M_2] / r^2$$
 $F_g = [6.67X10^{-11}] [5.98X10^{24}][1.99X10^{30}] [3X10^8][3X10^8]$

Fg =
$$3.53X10^{22}$$
 N
31) $T^2 = R^3$ $T^2 = [6]^3$ $T = 14.7$ years

third page of questions:

Question 20	true
Question 21	false
Question 22	true
Question 23	true
Question 24	true

```
Question 25 false
Question 26 C
Question 27 A
Question 28 D
Question 29 A
Question 30 C
```

Question 31 horizontal axis: absolute temperature AT vertical axis relative luminosity RL

diagonal line MSS oval that contains B: SGS oval that contains D: WD other oval :GS

32: use Fgrav mass of sun, mass of Neptune distance r in meters Fgrav = $\begin{bmatrix} 6.67X10^{-11} \end{bmatrix} \begin{bmatrix} 1.99 \ X10^{30} \end{bmatrix} \begin{bmatrix} 1.02 \ X10^{26} \end{bmatrix} = \underbrace{13.54 \ X10^{45}}_{20.25 \ X10^{24}}$

 $F grav = 0.669 X10^{21} = 6.69X10^{20} N$

33. use $T^2 = R^3$ use distance in AU for Neptune; answer in years $T^2 = [30][30][30] = 27000$ T = 164.3 years

34 use rs = 2MG/c2 c = $3X10^8$ rs = $2[1.02X10^{26}][6.67X10^{-11}]$ = $13.61X10^{15}$ = $1.51X10^{-1}$ = 0.151 m $= 3X10^8][3X10^8]$ $= 3X10^{16}$