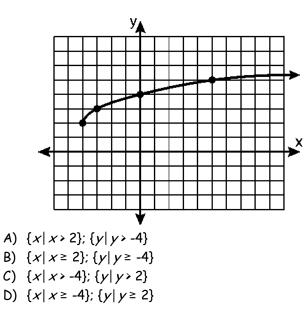

Name:

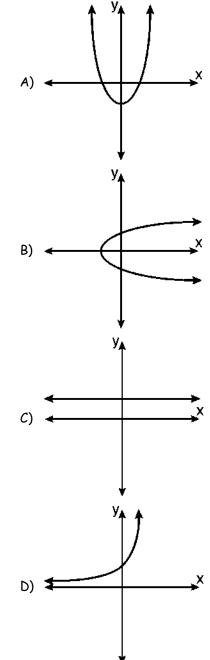
Math 433: HW #82 (Review for Third Quarter Exam #2) Due: Mon, April 8

- 1) What is the range of $f(x) = (x + 4)^2 + 7$? A) $y \ge 4$ B) $y \ge 7$ C) $y \ge -4$ D) y = 7
- 2) Which one of the following relations is not a function?

A)
$$x^2 + 4x + y = 4$$

C) $(x - 2)^2 + y^2 = 4$


B) xy = 4 D) x + y = 4

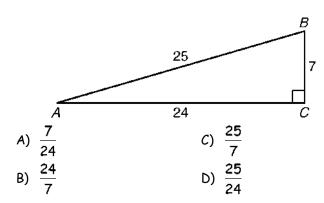

4) If
$$\angle A$$
 is acute and $\tan A = \frac{2}{3}$, then
A) $\cot (90^\circ - A) = \frac{2}{3}$ C) $\cot (90^\circ - A) = \frac{1}{3}$
B) $\cot A = \frac{2}{3}$ D) $\cot A = \frac{1}{3}$

5652 - 1 - Page 2

- 5) The straight string of a kite makes an angle of elevation from the ground of 60°. The length of the string is 400 feet. What is the best approximation of the height of the kite?
 - A) 200 ft C) 300 ft
 - B) 250 ft D) 350 ft
- 6) What are the domain and the range of the function shown in the graph below?

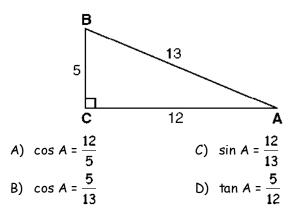
7) If $f(x) = x^2 - 5$ and g(x) = 6x, then g(f(x)) is equal to A) $6x^2 - 30$ C) $36x^2 - 5$ B) $x^2 + 6x - 5$ D) $6x^3 - 30x$

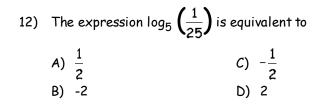
8) If $r = \sqrt[3]{\frac{A^2B}{C}}$, then log *r* can be represented by


A)
$$\frac{1}{6} \log A + \frac{1}{3} \log B - \log C$$

B) $3(\log A^2 + \log B - \log C)$
C) $\frac{2}{3} \log A + \frac{1}{3} \log B - \frac{1}{3} \log C$
D) $\frac{1}{3} \log (A^2 + B) - C$

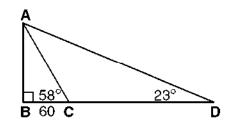
10) The expression $x^{-\frac{2}{5}}$ is equivalent to


A)
$$-\sqrt[2]{x^5}$$
 C) $\frac{1}{\sqrt[2]{x^5}}$


B)
$$\frac{1}{\sqrt[5]{x^2}}$$
 D) $-\sqrt[5]{x^2}$

A) $y = 0.5^{x}$ B) $y = 0.5^{-x}$ B) $y = 0.5^{-x}$ C) $y = 5^{-x}$ D) $y = 5^{x}$

16) In the accompanying diagram of $\triangle ABC$, which expression can be used to determine m $\angle A$?



- 13) Expressed as a function of a positive acute angle, cos (-305°) is equal to
 - A) -sin 55°
 C) cos 55°
 - B) sin 55° D) -cos 55°
- 14) What is the domain of the function $f(x) = \sqrt{x-2} + 3$?

B) [3,∞) D) (-∞,∞)

17) In the accompanying diagram of $\triangle ABD$, m $\angle B = 90^{\circ}$, BCD, m $\angle ACB = 58^{\circ}$, m $\angle D = 23^{\circ}$, and BC = 60 meters.

- (a) Find, to the nearest meter, the length of \overline{AB} .
- (b) Using the result from part(a), find the perimeter of $\triangle ABD$ to the nearest meter.