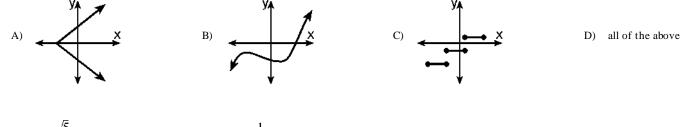

Math 433/ Review for Fourth Quarter Exam (Optional) Name: _____

	ne:			
1)	Log (cot θ) is equivalent to			
	A) $\log(\sin \theta) + \log(\cos \theta)$		C) $\log(\cos \theta) - \log(\sin \theta)$	
	B) $\log(\cos \theta) + \log(\sin \theta)$		D) $\log (\sin \theta) - \log (\cos \theta)$	
2)	The expression $\sec^2 \theta + \csc^2 \theta$	θ is equivalent to		
	A) $1 + \tan^2 \theta$	B) $\frac{1}{\sin^2\theta\cos^2\theta}$	C) $\sin^2\theta\cos^2\theta$	D) $1 - \tan^2 \theta$
3)	The expression $\frac{1+\cos 2x}{\sin 2x}$ is e	equivalent to		
	A) $\cot x$	B) $-\cos x$	C) $\tan x$	D) $-\sin x$
4)	The expression (cos α)(csc α	- sec α) is equivalent to		
	A) $-\cos \alpha$	B) $1 - \tan \alpha$	C) tan α - 1	D) $\cot \alpha - 1$
5)	What is the length of \overline{QR} in c	entimeters?		
		10	P 10 mm	
		10 cr	m 10 cm	
	A) 10\\[3	B) 5	C) 10	D) $5\sqrt{3}$
	Which relation is also a funct	ion?		
6)		2 2	\bigcirc 1^{2}	2 2
6)	A) $x^2 + y^2 = 36$	B) $x^2 - y^2 = 36$	$C) y = 4x^2$	D) $9x^2 + 4y^2 = 36$
6) 7)	, .	B) $x^2 - y^2 = 36$ to the domain of $f(x) = 1 + x^2$ so		D) $9x^2 + 4y^2 = 36$

8) If $\sin A = \frac{3}{5}$, $\sin B = \frac{2}{3}$, and $\angle A$ and $\angle B$ are acute angles, what is the value of $\cos (A - B)$? A) $-\frac{2}{3}$ B) $\frac{4\sqrt{5}+6}{15}$ C) $\frac{4\sqrt{5}+2}{5}$ D) $\frac{4\sqrt{5}-6}{15}$ 9) The accompanying diagram represents the graph of f(x).

Which graph below represents $f^{-1}(x)$?

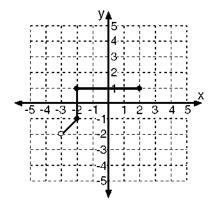


10) Which of the following have the property that $f(x) = f^{-1}(x)$?

I. y = -x $II. y = -\frac{1}{x}$ $III. y = -x^2$ $IV. y = -x^3$

A) <i>II</i> and <i>III</i> , only	B) <i>I</i> , <i>II</i> , and <i>III</i> , only	C) <i>II</i> , <i>III</i> , and <i>IV</i> , only	D) <i>I</i> and <i>II</i> , only

- 11)The expression $\cos 70^{\circ} \cos 10^{\circ} + \sin 70^{\circ} \sin 10^{\circ}$ is equivalent toA) $\cos 80^{\circ}$ B) $\sin 80^{\circ}$ C) $\cos 60^{\circ}$ D) $\sin 60^{\circ}$
- 12) How many solutions exist for the equation $3 \cos 2x = -3$ in the interval $0 \le x < 2\pi$?A) 1B) 2C) 3D) 4
- 13) Which graph of a relation is also a function?


14) If sec $x = \frac{\sqrt{5}}{2}$ with angle x in quadrant *IV* and $\tan y = -\frac{1}{3}$ with angle y in quadrant *II*, find the value of $\cos(x - y)$.

15) Find, to the nearest degree, the solution set of $3 \sin^2 x = 5 \cos x + 1$ over the domain $0^\circ \le x < 360^\circ$.

16) If $\cos \theta = -\frac{3}{5}$, find $\cos 2\theta$ and express in simplest form.

17) If B is a second quadrant angle and
$$\cos B = -\frac{15}{17}$$
, find $\sin 2B$.

- 18) For the graph of the relation below,
 - (a) state the domain.
 - (**b**) state the range.
 - (c) state whether or not the relation is a function. [Justify your answer.]

19) If
$$g(x) = x + 3$$
 and $f(x) = x^2 - 2$, find the value of $f(g(x - 3))$.

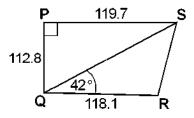
20) If A is a positive acute angle and tan A = $\frac{5}{6}$, find the value of cos 2A.

21) If x is a positive acute angle, solve $4 \cos x - 2 = \cos x$ to the nearest degree.

22) How many different triangles can be constructed, given the parts $m \angle A = 54^{\circ}$, a = 30, and b = 35.

23) Find, to the nearest degree, *all* values of x between 0° and 360° that satisfy the equation $2 \sin x + 4 \cos 2x = 3$.

24) Find, to the nearest degree, the solution set of $2 \sec^2 B = 5$ - tan B over the domain $0^\circ \le x < 360^\circ$.


25) Find the exact value of $\cos 105^{\circ}$.

26) Given $2 \sin^2 x - \sin x = 0$, solve for x in the interval $0^\circ \le x < 360^\circ$.

27) If
$$\sin A = \frac{12}{13}$$
 with angle A in quadrant *II* and $\cos B = -\frac{4}{5}$ with angle B in quadrant *III*, find the value of $\sin (A + B)$.

28) Find, to the nearest degree, the solution set of $\tan^2 x + 3 \tan x = 18$ over the domain $0^\circ \le x < 360^\circ$.

- 29) Express sec θ + sec θ tan² θ as a single trigonometric function.
- 30) Find the exact value of $1 2 \sin^2 157.5^\circ$.
- 31) A developer wants to save space in his housing track for a park. The area he has in mind for the park is shown as quadrilateral PQRS in the diagram below. Find the area of the park to the nearest tenth of a square foot.

32) Two forces of 17 pounds and 39 pounds act on a body at an angle of 142°. Find, to the nearest pound, the resultant of these two forces.