Physics Chapter 1-2 Test Review

- 1. Define both displacement and distance and than thoroughly explain the difference between displacement and distance?

 A---B
- 2. Be able to answer questions concerning a graph. List what's taking place at each number on the graph.

3. A tennis ball is thrown vertically upward with an initial velocity of 47 m/s. How long will it take for the ball to reach the top? Vf = 0 a = (Vf-Vi)/time $g = 9.8 \text{ m/s}^2$ (on Earth)

$$-9.8 = 0 - 47$$

$$-9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

$$+ 0.9.8 = -47$$

4. A boy walks a total distance of 210 m. If it takes him 36,900 s to make this trip, what is his speed? $S_{av} = \Delta d$ Δt $S_{av} = average speed$ d = distance

$$S = \frac{300}{300,900} = \sqrt{30057\%}$$

5. With an average acceleration of 37 m/s² and an initial velocity of 120 m/s, what would his final velocity be if it takes him 56000 seconds? a = (Vf-Vi)/time

6000.
$$37 = \frac{Vf - 120}{56000}$$
, $\frac{56000}{4120}$ $\frac{2072020}{2072120}$

6. With an acceleration of -.4 m/s², how long will it take a cyclist to bring a bicycle with an initial velocity of 13.5 m/s to a complete stop (vf=0)? a = (Vf-Vi)/time

Sara will run a 3.1 mile race at an average pace of 9 miles an hour. How long will it take her to finish the race?

Sav = average speed d = distance t = time

17 hours

2.9 hours

0 34 hours

What type of motion is represented on the graph?

8.

Standing still

Constant speed

Speeding up

Slowing down

9.

A toy car is sent down a 5 m long track in a time of 3.13 seconds. What is the average speed of the car in m/s?

15 65 m/s

$$S_{av} = \Delta d$$
 $S_{av} = average speed$ $S_{av} = derivative deri$

d = distance

0.626 m/s

t = time

1.6 m/s

8 13 m/s

10.

What is the average velocity represented on the graph?

4 m/s

2 m/s

11. a = (Vf-Vi)/time

A robot changes velocity from 2 meters per second to 7 meters per second in a 3 second period. What is the acceleration?

- O 5.0 m/s
- 50 m/s²
- () 1.6 m/s
- () 1.6 m/s²
- $0 = \frac{(7-2)}{3} = 1652$
- 12. What term describes a vehicle traveling north on a highway at 65 mph?
 - Angular speed
 - Linear speed
 - Velocity
 - Acceleration
- 13.

John wants to conduct a test to see if a new lubricant on the axle of his toy car will increase the speed of his car on a 10 foot track. Identify the correct variables for his experiment. Match the term to its correct definition

Track # 2	Car ≠7		
	Trial ≈1	Trial #2	Trial #3
Before Lubrication	5.1 sec	5.3 sec	5.2 sec
After Lubrication	4.7 sec	4.9 sec	4.8 sec

- 14. What type of curve is the path of a projectile with no air resistance?
- 15. A certain teacher throws a white board marker in the direction of her least favorite student. It stays in the air for 1.2 seconds. What is the height of the marker? g=-9.8m/s²

 $Y = -.5 (g)(t^2)$ $y = -5(-9.8)1.7^2 = [7.056m]$