## **Notes on Scientific Notation**

\*\*\*\*Scientific Notation is used to re-write very big numbers and very small numbers\*\*\*\*

Directions: Express each number in scientific notation.

Here are some examples for you:

| 1. | 8,350 (following steps)                  |                                                                |
|----|------------------------------------------|----------------------------------------------------------------|
| a. | 8.350                                    | <u>Steps</u><br>a. Place decimal point after the first         |
|    |                                          | non-zero number                                                |
|    |                                          | b. Remember to write the other numbers after the decimal point |
| c. | 8.350 <b>x 10</b>                        | c. Write x 10                                                  |
| d. | $8.350 \ge 10^3$                         | d. The exponent after the 10 is determined by how many spaces  |
| (3 | spaces to move from decimal to end of #) | you move                                                       |

\*Move right- If original number is greater than 1

\*Move left- If original number is less than 1

\*Positive Exponent- If original number is greater than 1

\*Negative Exponent- If original number is less than 1

2. .00063

a. 6**.**3

c. 6.3 x 10

d. 6.3 x 10<sup>-4</sup>

(4 spaces to move from decimal to beginning of number)

## Scientific Notation

Express each number in scientific notation.

1) 910,000,000

2) .000003

3) 70,000,000,000

4).00000000222

Express each number in standard notation.

5)  $3 \times 10^5$  6)  $9.72 \times 10^{-4}$ 

7) 4.93 x 10<sup>8</sup>

8) 6 x 10<sup>-7</sup>

## Scientific Notation

Express each number in scientific notation.

1) 832,700,000

2) .0000001

3) 6,300,000

4) .0000000045

Express each number in standard notation.

5) 1.67 x  $10^5$  6) 4 x  $10^{-7}$ 

7) 8.2345 x 10<sup>9</sup>

8) 6.983 x 10<sup>-6</sup>

Scientific Notation

Express each number in scientific notation.

1) 80,000,000

2) 12,300,000,000

3) 850 x 10<sup>5</sup>

4) .009 x 10<sup>-4</sup>

Express each number in standard notation.

5)  $6.1 \times 10^{-7}$  6)  $5.3 \times 10^{6}$ 

7. 8.4 x  $10^3$ 

8. 2.689 x 10<sup>-6</sup>

### **Notes on Perimeter and Area**

Perimeter- the distance around a figure

P = 2l + 2w  $\leftarrow$  add all the sides of the figure (add length twice and add width twice)

\*\*\*\*Real-life Example: Putting up a fence

Area- the amount of space inside a figure

A = lw  $\leftarrow$  multiply the length times the width

\*\*\*\*Real-life Example: Putting carpet in a room

Here are some examples for you:

#### Find the perimeter and area.



# Perimeter and Area

## Find the perimeter AND area.



| P = A = | P = | A = |
|---------|-----|-----|
|---------|-----|-----|



 $\mathbf{P} =$ 

A =

A =

Ms. Reiff Math Block 2A Week 2- Lesson 3



9. How do you find PERIMETER?

