Name

1) A plane flying horizontally at an altitude of 1.0 mi and a speed of 200 mi/h passes directly over a radar station. Find the rate at which the distance from the plane to the station is increasing when it is 2.6 mi away from the station.

$\chi^2 + \chi^2 = Z^2$	$\chi^{2}+1^{2}=2.6^{2}$
	X2= 5.76
$2x \frac{dx}{dt} + 2y \frac{dy}{dt} = 2z \frac{dz}{dt}$	$X = \sqrt{5.76}$ X = 2.4
2(2.4)(200) + 2(1)(0) = 2(2.6) dz	?
960 = 5.2 dz dt dt dt dt	*
dz = 960 ~ 184-67 m/ha	
dt 5.2 ~ 107-62 m/m	1.0 miles $y = 1$
$\frac{dY}{dt} = 200 \qquad \chi (2.4)$) *

2) The altitude of a triangle is increasing at a rate of 2 cm/min while the area of the triangle remains constant. At what rate is the base of the triangle changing when the altitude is 5 cm and the area is 10 cm^2 ?

dA = 0dt (5) y X (4)dt 2. + 2. - 1. 4 $\frac{1}{2} \frac{dx}{dt} \cdot 5$ A= jxy 10= -2-x:5 20=5x4=x- 1.6 cm/min or

Related Rates Problems III.doc --- Calculus

3) The length of a rectangle is increasing at a rate of 3 cm/sec while the width is decreasing at a rate of 4 cm/sec.

a) How fast is the **area** of the rectangle changing when the length is 12 cm long and the width is 10 cm long?

A = LW $\frac{dA}{dt} = \frac{dl}{dt} \omega + \frac{d\omega}{dt} l$ $\frac{dA}{1+} = (3)(10) + (-4)(12)$ $dA = -18 \text{ cm}^2/\text{sec}$

b) How fast is the **perimeter** of the rectangle changing when the length is 12 cm long and the width is 10 cm long?

