
Real regents questions related to RIGID MOTION

The graph below shows two congruent triangles, ABC and A'B'C'.

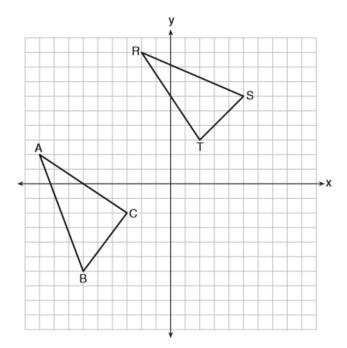
Which rigid motion would map $\triangle ABC$ onto $\triangle A'B'C'$?

- (1) a rotation of 90 degrees counterclockwise about the origin
- (2) a translation of three units to the left and three units up
- (3) a rotation of 180 degrees about the origin
- (4) a reflection over the line y = x

The vertices of $\triangle PQR$ have coordinates P(2,3), Q(3,8), and R(7,3). Under which transformation of $\triangle PQR$ are distance and angle measure preserved?

$$(1)$$
 $(x,y) \rightarrow (2x,3y)$

(3)
$$(x,y) \to (2x, y + 3)$$


(2)
$$(x,y) \to (x+2,3y)$$

(2)
$$(x,y) \to (x+2,3y)$$
 (4) $(x,y) \to (x+2,y+3)$

Which transformation would not carry a square onto itself?

- (1) a reflection over one of its diagonals
- (2) a 90° rotation clockwise about its center
- (3) a 180° rotation about one of its vertices
- (4) a reflection over the perpendicular bisector of one side

In the graph below, $\triangle ABC$ has coordinates A(-9,2), B(-6,-6), and C(-3,-2), and $\triangle RST$ has coordinates R(-2,9), S(5,6), and T(2,3).

Is $\triangle ABC$ congruent to $\triangle RST$? Use the properties of rigid motions to explain your reasoning.

What is an equation of a line which passes through (6,9) and is perpendicular to the line whose equation is 4x - 6y = 15?

(1)
$$y - 9 = -\frac{3}{2}(x - 6)$$
 (3) $y + 9 = -\frac{3}{2}(x + 6)$

(3)
$$y + 9 = -\frac{3}{2}(x + 6)$$

(2)
$$y - 9 = \frac{2}{3}(x - 6)$$
 (4) $y + 9 = \frac{2}{3}(x + 6)$

(4)
$$y + 9 = \frac{2}{3}(x + 6)$$