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Rational Expressions

Q

PRational expressions can be written in the form 
where P and Q are both polynomials and Q  0.

Examples of Rational Expressions
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To evaluate a rational expression for a particular 
value(s), substitute the replacement value(s) into the 
rational expression and simplify the result.

Evaluating Rational Expressions

Example

Evaluate the following expression for y = 2.






y

y

5

2

)
2 2

( 25













7

4

7

4
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In the previous example, what would happen if we 
tried to evaluate the rational expression for y = 5?






y

y

5

2 5 2
5 5



 0

3

This expression is undefined!

Evaluating Rational Expressions
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We have to be able to determine when a 
rational expression is undefined.

A rational expression is undefined when the 
denominator is equal to zero.

The numerator being equal to zero is okay 
(the rational expression simply equals zero).

Undefined Rational Expressions
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Find any real numbers that make the following rational 
expression undefined.

4515

49 3





x

xx

The expression is undefined when 15x + 45 = 0.

So the expression is undefined when x = 3.

Undefined Rational Expressions

Example
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Simplifying a rational expression means writing it in 
lowest terms or simplest form.

To do this, we need to use the 
Fundamental Principle of Rational Expressions

If P, Q, and R are polynomials, and Q and R are not 0,

Q

P

QR

PR


Simplifying Rational Expressions
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Simplifying a Rational Expression
1)   Completely factor the numerator and 

denominator.

 2)   Apply the Fundamental Principle of Rational 
Expressions to eliminate common factors in the 
numerator and denominator.

Warning!

Only common FACTORS can be eliminated from the 
numerator and denominator.  Make sure any 
expression you eliminate is a factor.

Simplifying Rational Expressions
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Simplify the following expression.






xx

x

5

357
2






)5(

)5(7

xx

x

x

7

Simplifying Rational Expressions

Example
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Simplify the following expression.






20

43
2

2

xx

xx






)4)(5(

)1)(4(

xx

xx

5

1





x

x

Simplifying Rational Expressions

Example
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Simplify the following expression.






7

7

y

y






7

)7(1

y

y
1

Simplifying Rational Expressions

Example
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Multiplying and Dividing 
Rational Expressions
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Multiplying Rational Expressions

Multiplying rational expressions when P, 
Q, R, and S are polynomials with Q  0 
and S  0.

QS

PR

S

R

Q

P

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Note that after multiplying such expressions, our result 
may not be in simplified form, so we use the following 
techniques.
Multiplying rational expressions
1)  Factor the numerators and denominators.
2)  Multiply the numerators and multiply the      
denominators.
3)  Simplify or write the product in lowest terms      by 
applying the fundamental principle to all      common 
factors.

Multiplying Rational Expressions
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Multiply the following rational expressions.


12

5

10

6
3

2 x

x

x

4

1






32252

532

xxx

xxx

Example

Multiplying Rational Expressions
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Multiply the following rational expressions.









mnm

m

nm

nm
2

2)(






)()(

))((

nmmnm

mnmnm

nm

nm





Multiplying Rational Expressions

Example
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Dividing rational expressions when P, Q, R, 
and S are polynomials with Q  0, S  0 and 
R  0.

QR

PS

R

S

Q

P

S

R

Q

P


Dividing Rational Expressions
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When dividing rational expressions, first 
change the division into a multiplication 
problem, where you use the reciprocal of the
divisor as the second factor.

Then treat it as a multiplication problem 
(factor, multiply, simplify).

Dividing Rational Expressions
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Divide the following rational expression.







25

155

5

)3( 2 xx







155

25

5

)3( 2

x

x






)3(55

55)3)(3(

x

xx
3x

Dividing Rational Expressions

Example
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Converting Between Units of Measure

Use unit fractions (equivalent to 1), but with 
different measurements in the numerator and 
denominator.

Multiply the unit fractions like rational 
expressions, canceling common units in the 
numerators and denominators.

Units of Measure
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Convert 1008 square inches into square feet.



















in 12

ft 1

in 12

ft 1

ft. sq. 7

(1008 sq in)

(2·2·2·2·3·3·7 in · 
in)























 in

 ft

 in

 ft

322

1

322

1

Example

Units of Measure
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Pop Quiz



Adding and Subtracting Rational 
Expressions with the Same 
Denominator and Least Common 
Denominators
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Rational Expressions

If P, Q and R are polynomials and Q  0,

R

QP

R

Q

R

P 


R

QP

R

Q

R

P 




Martin-Gay, Developmental Mathematics 30

Add the following rational expressions.











72

83

72

34

p

p

p

p

72

57





p

p






72

8334

p

pp

Adding Rational Expressions

Example
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Subtract the following rational expressions.





 2

16

2

8

yy

y






2

168

y

y






2

)2(8

y

y
8

Subtracting Rational Expressions

Example
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Subtract the following rational expressions.





 103

6

103

3
22 yyyy

y






103

63
2 yy

y






)2)(5(

)2(3

yy

y

5

3

y

Subtracting Rational Expressions

Example
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To add or subtract rational expressions with 
unlike denominators, you have to change 
them to equivalent forms that have the same 
denominator (a common denominator).

This involves finding the least common 
denominator of the two original rational 
expressions.

Least Common Denominators



Martin-Gay, Developmental Mathematics 34

To find a Least Common Denominator:
1)  Factor the given denominators.
2)  Take the product of all the unique factors.
   Each factor should be raised to a power equal    to 

the greatest number of times that factor      appears in 
any one of the factored          denominators.

Least Common Denominators
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Find the LCD of the following rational expressions.

124

3
,

6

1

y

x

y

yy 326 

)3(2)3(4124 2  yyy

)3(12)3(32 is LCD  theSo 2  yyyy

Least Common Denominators

Example
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Find the LCD of the following rational expressions.

2110

24
,

34

4
22 



 xx

x

xx

)1)(3(342  xxxx

)7)(3(21102  xxxx

7)1)(x3)(x(x is LCD  theSo 

Least Common Denominators

Example
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Find the LCD of the following rational expressions.

12

4
,

55

3
2

2

2  xx

x

x

x

)1)(1(5)1(555 22  xxxx
22 )1(12  xxx

21)-1)(x5(x is LCD  theSo 

Least Common Denominators

Example
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Find the LCD of the following rational expressions.

xx  3

2
,

3

1

Both of the denominators are already factored.
Since each is the opposite of the other, you can
use either x – 3 or 3 – x as the LCD.

Least Common Denominators

Example
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To change rational expressions into equivalent
forms, we use the principal that multiplying 
by 1 (or any form of 1), will give you an 
equivalent expression.

RQ

RP

R

R

Q

P

Q

P

Q

P




 1

Multiplying by 1
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Rewrite the rational expression as an equivalent 
rational expression with the given denominator.

95 729

3

yy



59

3

y


4

4

5 8

8

9

3

y

y

y 9

4

72

24

y

y

Equivalent Expressions

Example



Adding and Subtracting 
Rational Expressions with
Different Denominators
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As stated in the previous section, to add or 
subtract rational expressions with different 
denominators, we have to change them to 
equivalent forms first.

Unlike Denominators
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Adding or Subtracting Rational Expressions with 
Unlike Denominators

1) Find the LCD of all the rational 
expressions.

2) Rewrite each rational expression as an 
equivalent one with the LCD as the 
denominator.

3) Add or subtract numerators and write result 
over the LCD.

4) Simplify rational expression, if possible.

Unlike Denominators
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Add the following rational expressions.


aa 6

8

7

15

aa 6

8
,

7

15











aa 67

87

76

156


aa 42

56

42

90


a42

146

a21

73

Adding with Unlike Denominators

Example
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Subtract the following rational expressions.

xx 26

3
,

62

5







 xx 26

3

62

5





 62

3

62

5

xx


62

8

x






)3(2

222

x 3

4

x

Subtracting with Unlike Denominators

Example
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Subtract the following rational expressions.

3 and 
32

7

x




3
32

7

x







 32

)32(3

32

7

x

x

x







 32

96

32

7

x

x

x






32

967

x

x

32

616





x

x

Subtracting with Unlike Denominators

Example
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Add the following rational expressions.

65
,

6

4
22  xx

x

xx





 656

4
22 xx

x

xx





 )2)(3()2)(3(

4

xx

x

xx











)3)(2)(3(

)3(

)3)(2)(3(

)3(4

xxx

xx

xxx

x






)3)(3)(2(

3124 2

xxx

xxx

)3)(3)(2(

122





xxx

xx

Adding with Unlike Denominators

Example



Solving Equations 
Containing Rational 
Expressions
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Solving Equations

First note that an equation contains an equal sign
and an expression does not.
To solve EQUATIONS containing rational 
expressions, clear the fractions by multiplying 
both sides of the equation by the LCD of all the 
fractions.
Then solve as in previous sections.
Note:  this works for equations only, not 
simplifying expressions.
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6

7
1

3

5


x

x
x

x 6
6

7
1

3

5
6 


















xx 7610 

x10

7
3 610

5
1 



6

7
1

30

5


6

7
1

6

1
 true

Solve the following rational equation.
Check in the original 
equation.

Solving Equations

Example
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xxxx 33

1

1

1

2

1
2 






   16
)1(3

1

1

1

2

1
16 




















 xx

xxxx
xx

  2613  xx

2633  xx

233  x

13  x

Solve the following rational equation.

3
1x

Solving Equations

Example

Continued.
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       
21 1 1 1

3 3 3 3

1 1 1

2 1 3 3
 

 

1
3

1

1

4

3

2

3




4

3

4

3

4

6
 true

Substitute the value for x into the original 
equation, to check the solution.

So the solution is
3

1x

Solving Equations

Example Continued
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Solve the following rational equation.

Solving Equations

Example

Continued.

5

1

63

1

107

2
2 









xxxx

x

     523
5

1

63

1

107

2
523

2


























 xx

xxxx

x
xx

     23523  xxx

63563  xxx

66533  xxx

75 x

5
7x
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Substitute the value for x into the original 
equation, to check the solution.

Solving Equations

Example Continued

5
18

1

6
5

21

1

10
5

49
25

49
5

3







true

So the solution is
5

7x

       2

7 2 1 15

3 6 57 10
7 77 7

5 55 5

 
 

     

18

5

9

5

18
5 



Martin-Gay, Developmental Mathematics 55

Solve the following rational equation.

Solving Equations

Example

Continued.

1

2

1

1




 xx

     11
1

2

1

1
11 




















 xx

xx
xx

 121  xx

221  xx

x3



Martin-Gay, Developmental Mathematics 56

Substitute the value for x into the original 
equation, to check the solution.

Solving Equations

Example Continued

3 3
1 2

1 1


 

4

2

2

1
 true

So the solution is x = 3.
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Solve the following rational equation.

Solving Equations

Example

Continued.

aaa 





 3

2

3

3

9

12
2

     aa
aaa

aa 






















 33

3

2

3

3

9

12
33

2

   aa  323312

aa 263912 

aa 26321 

a515 
a3
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Substitute the value for x into the original 
equation, to check the solution.

Solving Equations

Example Continued

Since substituting the suggested value of a into the 
equation produced undefined expressions, the 
solution is .

2

12 3 2
39 33 33
 
 

0

2

5

3

0

12

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Solving an Equation With Multiple Variables for 
One of the Variables

1) Multiply to clear fractions.
2) Use distributive property to remove 

grouping symbols.
3) Combine like terms to simplify each side.
4) Get all terms containing the specified 

variable on the same side of the equation, 
other terms on the opposite side.

5) Isolate the specified variable.

Solving Equations with Multiple Variables
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21

111

RRR


21

21

21

111
RRR

RRR
RRR 


















1221 RRRRRR 

2121 RRRRRR 

  221 RRRRR 

RR

RR
R




2

2
1

Solve the following equation for R1

Example

Solving Equations with Multiple Variables



Problem Solving with 
Rational Equations
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Ratios and Rates

Ratio is the quotient of two numbers or two 
quantities.

The units associated with the ratio are important.
The units should match.
If the units do not match, it is called a rate, rather
than a ratio.

The ratio of the numbers a and b can also be 
written as a:b, or    .

b

a
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Proportion is two ratios (or rates) that are 
equal to each other.

d

c

b

a


We can rewrite the proportion by multiplying 
by the LCD, bd.

This simplifies the proportion to ad = bc.

This is commonly referred to as the cross product.

Proportions
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Solve the proportion for x.

3

5

2

1






x

x

   2513  xx

10533  xx

72  x

2
7x

Solving Proportions

Example

Continued.
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3

5

2
3

2
5






true

Substitute the value for x into the original 
equation, to check the solution.

So the solution is
2

7x

7
2

7

1 5
32

2










Example Continued

Solving Proportions
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If a 170-pound person weighs approximately 65 pounds 
on Mars, how much does a 9000-pound satellite weigh?

Marson  satellite pound-x

Marson person  pound-65

Earthon  satellite pound-9000

Earthon person  pound-170


000,585659000170 x

pounds 3441170/585000 x

Solving Proportions

Example
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Given the following prices charged for 
various sizes of picante sauce, find the best 
buy.
•10 ounces for $0.99
•16 ounces for $1.69
•30 ounces for $3.29

Solving Proportions

Example

Continued.
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Size               Price                   Unit Price

10 ounces       $0.99           $0.99/10 = $0.099 

16 ounces       $1.69           $1.69/16 = $0.105625 

30 ounces       $3.29           $3.29/30  $0.10967 

The 10 ounce size has the lower unit price, so it is the 
best buy.

Example Continued

Solving Proportions
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In similar triangles, the measures of 
corresponding angles are equal, and 
corresponding sides are in proportion.

Given information about two similar triangles,
you can often set up a proportion that will 
allow you to solve for the missing lengths of 
sides.

Similar Triangles
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Given the following triangles, find the unknown 
length y.

10 m

12 m 5 m

y

Similar Triangles

Example

Continued
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1.)  Understand

Read and reread the problem.  We look for the corresponding 
sides in the 2 triangles.  Then set up a proportion that relates 
the unknown side, as well.

Example

Continued

Similar Triangles

2.)  Translate

By setting up a proportion relating lengths of corresponding 
sides of the two triangles, we get

y

10

5

12

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Example continued
3.)  Solve

Continued

Similar Triangles

 
6

25
12

50 y meters

5010512 y
y

10

5

12

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Example continued

4.)  Interpret

Similar Triangles

Check:  We substitute the value we found from 
the proportion calculation back into the problem.

25

60

6
25

10

5

12
 true

State:  The missing length of the triangle is  
6

25 meters
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Finding an Unknown Number

Example

Continued

The quotient of a number and 9 times its reciprocal 
is 1.  Find the number.

Read and reread the problem.  If we let 

     n = the number, then

        = the reciprocal of the number
n

1

1.)  Understand
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Continued

Finding an Unknown Number

2.)  Translate

Example continued

The quotient of



a number

n

and 9 times its reciprocal










n

1
9

is

=

1

1
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Example continued
3.)  Solve

Continued

Finding an Unknown Number

1
1

9 








n

n

1
9










n
n

1
9


n
n

92 n

3,3n
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Example continued
4.)  Interpret

Finding an Unknown Number

Check:  We substitute the values we found from the 
equation back into the problem.  Note that nothing in 
the problem indicates that we are restricted to positive
values.

1
3

1
93 










133 

1
3

1
93 












133 

State:  The missing number is 3 or –3.

true true
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Solving a Work Problem

Example

Continued

An experienced roofer can roof a house in 26 hours.  A 
beginner needs 39 hours to do the same job.  How long will it
take if the two roofers work together?

Read and reread the problem.  By using the times for each 
roofer to complete the job alone, we can figure out their 
corresponding work rates in portion of the job done per hour.

1.)  Understand

Experienced roofer    26         1/26
Beginner roofer    39         /39
Together        t           1/t

Time in hrs Portion job/hr
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Continued

Solving a Work Problem

2.)  Translate

Example continued

t

1

39

1

26

1


Since the rate of the two roofers working together 
would be equal to the sum of the rates of the two 
roofers working independently,
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Example continued
3.)  Solve

Continued

Solving a Work Problem

t

1

39

1

26

1


t
t

t 78
1

39

1

26

1
78 


















7823  tt

785 t

hours 15.6or  5/78t
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Example continued
4.)  Interpret

Solving a Work Problem

Check:  We substitute the value we found from the 
proportion calculation back into the problem.

State:  The roofers would take 15.6 hours working 
together to finish the job.

5
78

1

39

1

26

1


78

5

78

2

78

3
 true
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Solving a Rate Problem

Example

Continued

The speed of Lazy River’s current is 5 mph.  A boat travels 
20 miles downstream in the same time as traveling 10 miles 
upstream.  Find the speed of the boat in still water.

Read and reread the problem.  By using the formula d=rt, we 
can rewrite the formula to find that t = d/r.
We note that the rate of the boat downstream would be the rate 
in still water + the water current and the rate of the boat 
upstream would be the rate in still water – the water current.

1.)  Understand

Down     20        r + 5    20/(r + 5)
Up          10        r – 5      10/(r – 5)

Distance     rate     time = d/r
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Continued

Solving a Rate Problem

2.)  Translate

Example continued

Since the problem states that the time to travel 
downstairs was the same as the time to travel 
upstairs, we get the equation

5

10

5

20




 rr
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Example continued
3.)  Solve

Continued

Solving a Rate Problem

5

10

5

20




 rr

     55
5

10

5

20
55 




















 rr

rr
rr

   510520  rr

501010020  rr

15010 r

mph 15r
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Example continued
4.)  Interpret

Solving a Rate Problem

Check:  We substitute the value we found from the 
proportion calculation back into the problem.

515

10

515

20






10

10

20

20
 true

State:  The speed of the boat in still water is 15 mph.



Simplifying Complex 
Fractions
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Complex Rational Fractions

Complex rational expressions (complex 
fraction) are rational expressions whose 
numerator, denominator, or both contain one or 
more rational expressions.
There are two methods that can be used when 
simplifying complex fractions.
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Simplifying a Complex Fraction (Method 1)
1) Simplify the numerator and denominator of 

the complex fraction so that each is a single 
fraction.

2) Multiply the numerator of the complex 
fraction by the reciprocal of the denominator 
of the complex fraction.

3) Simplify, if possible.

Simplifying Complex Fractions
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





2
2

2
2
x

x







2

4

2

2

4

2
x

x






2

4
2

4

x

x
4 2

2 4
x

x

 
 4

4





x

x

Example

Simplifying Complex Fractions
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Method 2 for simplifying a complex fraction
1) Find the LCD of all the fractions in both the 

numerator and the denominator.
2) Multiply both the numerator and the 

denominator by the LCD.
3) Simplify, if possible.

Simplifying Complex Fractions
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6

51

3

21
2





y

y 2

2

6

6

y

y
 

2

2

56

46

yy

y





Example

Simplifying Complex Fractions


