Name			
Period	Date	/	

15 • Chemical Kinetics

RATE LAWS

Big Ideas (This is Section 15.3 in the textbook, pages 694 – 700):

- One factor that speeds up a reaction is CONCENTRATION.
- Higher concentrations of reactants means there will be **more collisions** between the particles that need to collide to cause a reaction.
- How much the rate of a reaction increases gives clues to the step-by-step mechanism of a reaction.
- A Rate Law has a **standard format**. For a reaction such as $A + B \rightarrow C + D$, the rate law is:

Rate =
$$k[A]^{x}[B]^{y}$$

(x = the order of the reaction with respect to A, y = the order with respect to B and k = the rate constant)

1. Consider the initial rate data for the reaction, $A + B \rightarrow C$:

	[A]	[B]	Rate (mol·L ⁻¹ ·s ⁻¹)
Expt 1	0.10	0.10	2.0
Expt 2	0.10	0.20	4.0
Expt 3	0.20	0.20	32.0

- a. What is the order of reactant A?
- b. What is the order of reactant B?
- c. Write the rate equation for the reaction.
- d. Calculate the value of the specific rate constant, *k*.
- 2. Consider the initial rate data for the reaction, $3X + 2Y \rightarrow Z$:

	[X]	[Y]	Rate (mol·L ⁻¹ ·s ⁻¹)
Expt 1	0.10	0.20	4.0
Expt 2	0.10	0.10	1.0
Expt 3	0.20	0.20	4.0
Expt 4	0.25	0.25	

- a. What is the order of reactant X?
- b. What is the order of reactant Y?
- c. What is the overall order of the reaction?
- d. Write the rate equation for the reaction.
- e. Calculate the value of the specific rate constant, *k*.
- f. Calculate the rate when the [X] and $[Y] = 0.25 \text{ mol} \cdot \text{L}^{-1}$.

3. Consider the reaction: $2 \operatorname{NO}(g) + \operatorname{O}_2(g) \rightarrow 2 \operatorname{NO}_2(g)$

	Initial [NO] mol L ⁻¹	Initial $[O_2]$ mol L ⁻¹	Initial rate NO mol L ⁻¹ s ⁻¹
Experiment 1	0.010	0.010	2.5×10^{-5}
Experiment 2	0.020	0.010	$1.0 \ge 10^{-4}$
Experiment 3	0.010	0.020	5.0 x 10 ⁻⁵

The following data were obtained from three experiments using the method of initial rates:

- a. Determine the order of the reaction for each reactant.
- b. Write the rate equation for the reaction.
- c. Calculate the rate constant.
- d. Calculate the rate (in mol $L^{-1}s^{-1}$) at the instant when [NO] = 0.015 mol L^{-1} and [O₂] = 0.0050 mol L^{-1}
- e. At the instant when NO is reacting at the rate $1.0 \times 10^{-4} \text{ mol } \text{L}^{-1}\text{s}^{-1}$, what is the rate at which O₂ is reacting and NO₂ is forming?

4. The reaction of ^tbutyl-bromide $(CH_3)_3CBr$ with water is represented by the equation:

$$(CH_3)_3CBr + H_2O \rightarrow (CH_3)_3COH + HBr$$

The following data were obtained from three experiments using the method of initial rates:

	Initial [(CH ₃) ₃ CBr]	Initial [H ₂ O]	Initial rate
	$mol L^{-1}$	$mol L^{-1}$	$mol L^{-1}min^{-1}$
Experiment 1	5.0×10^{-2}	2.0 x 10 ⁻²	2.0 x 10 ⁻⁶
Experiment 2	5.0×10^{-2}	4.0×10^{-2}	2.0 x 10 ⁻⁶
Experiment 3	1.0 x 10 ⁻¹	4.0×10^{-2}	4.0 x 10 ⁻⁶

- a. What is the order with respect to $(CH_3)_3CBr$?
- b. What is the order with respect to H_2O ?
- c. What is the overall order of the reaction?
- d. Write the rate equation.
- e. Calculate the rate constant, k, for the reaction.

5. Some problems can be solved "by inspection", but you can also treat them **mathematically**. Consider the initial rate data for the reaction, $A + B \rightarrow C$:

	[A]	[B]	Rate (mol·L ⁻¹ ·s ⁻¹)
Expt 1	0.10	0.10	3.0 x 10 ⁻⁵
Expt 2	0.10	0.20	6.0 x 10 ⁻⁵
Expt 3	0.20	0.30	3.6 x 10 ⁻⁴

Use the rate law to write a reaction for Experiment 2 / Experiment 1

Rate =
$$k [A]^x [B]^y$$

Experiment 2:

Experiment 1:

Repeat the procedure with Experiment 3 / Experiment 1

Rate =
$$k [A]^x [B]$$

Experiment 3:

Experiment 1:

- a. What is the order of reactant A?
- b. What is the order of reactant B?
- c. Write the rate equation for the reaction.
- d. Calculate the value of the specific rate constant, *k*.
- 6. The reaction $2 \operatorname{NO}(g) + 2 \operatorname{H}_2(g) \rightarrow \operatorname{N}_2(g) + 2 \operatorname{H}_2\operatorname{O}(g)$ was studied at 904 °C, and the data in the table were collected.

	Initial [NO]	Initial [H ₂]	Initial rate N ₂
	$mol L^{-1}$	$mol L^{-1}$	mol $L^{-1}s^{-1}$
Experiment 1	0.420	0.122	0.136
Experiment 2	0.210	0.122	0.0339
Experiment 3	0.105	0.488	0.0339

- a. Determine the order of the reaction for each reactant.
- b. Write the rate equation for the reaction.
- c. Calculate the rate constant at 904 °C.
- d. Find the rate of appearance of N_2 at the instant when [NO] = 0.350 M and $[H_2] = 0.205$ M.

FRQ from the 2010 AP Exam

You should be able to do the entire question, but for this worksheet, simply do parts (b) and (c).

$$8 \operatorname{H}^{+}(aq) + 4 \operatorname{Cl}^{-}(aq) + \operatorname{MnO}_{4}^{-}(aq) \rightarrow 2 \operatorname{Cl}_{2}(g) + \operatorname{Mn}^{3+}(aq) + 4 \operatorname{H}_{2}O(l)$$

- Cl₂(g) can be generated in the laboratory by reacting potassium permanganate with an acidified solution of sodium chloride. The net-ionic equation for the reaction is given above.
 - (a) A 25.00 mL sample of 0.250 M NaCl reacts completely with excess KMnO₄(aq). The Cl₂(g) produced is dried and stored in a sealed container. At 22°C the pressure of the Cl₂(g) in the container is 0.950 atm.
 - (i) Calculate the number of moles of $Cl^{-}(aq)$ present before any reaction occurs.
 - (ii) Calculate the volume, in L, of the $Cl_2(g)$ in the sealed container.

An initial-rate study was performed on the reaction system. Data for the experiment are given in the table below.

Trial	[Cl-]	[MnO ₄ -]	[H ⁺]	Rate of Disappearance of MnO_4^{-1} in $M s^{-1}$
1	0.0104	0.00400	3.00	2.25×10^{-8}
2	0.0312	0.00400	3.00	2.03×10^{-7}
3	0.0312	0.00200	3.00	1.02×10^{-7}

- (b) Using the information in the table, determine the order of the reaction with respect to each of the following. Justify your answers.
 - (i) Cl⁻
 - (ii) MnO₄-
- (c) The reaction is known to be third order with respect to H⁺. Using this information and your answers to part (b) above, complete both of the following:
 - (i) Write the rate law for the reaction.
 - (ii) Calculate the value of the rate constant, k, for the reaction, including appropriate units.
- (d) Is it likely that the reaction occurs in a single elementary step? Justify your answer.