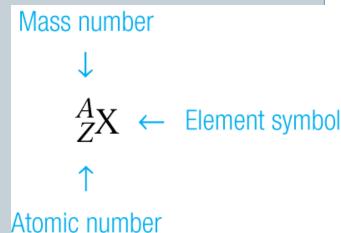

Radioactivity and Nuclear Energy

Radioactivity



Radioactivity

- We learned in earlier how the atomic model was discovered through multiple experiments.
- We learned that the **electrons** of the atom determine its chemical properties (how it reacts with and forms compounds with other elements)
- We also learned that the **nucleus** contains **protons** which determine which element the atom is. **Neutrons** are also contained in the nucleus of the atom.
- We will discover in this topic, that some elements are unstable and give off nuclear particles that can impact our lives. This is called **radioactivity**.

Radioactivity Atomic Terms

- nucleons particles found in the nucleus of an atom
 - neutrons
 - protons
- atomic number (Z) number of protons in the nucleus
- mass number (A) sum of the number of protons and neutrons
- isotopes atoms with identical atomic numbers but different mass numbers
- nuclide each unique atom

Radioactive Decay

 radioactive – nucleus which spontaneously decomposes forming a different nucleus and producing one or more particles

Many nuclei are **radioactive**; **that is, they spontaneously decompose**, forming a different nucleus and producing one or more particles.

- Alpha-particle production
- Alpha particle helium nucleus
 - Examples

$$^{222}_{88}$$
Ra $\rightarrow {}^{4}_{2}$ He + $^{218}_{86}$ Rn

 Net effect is loss of 4 in mass number and loss of 2 in atomic number.

- Beta-particle production
 - Beta particle electron
 - Examples

$$^{234}_{90}$$
Th $\rightarrow ^{234}_{91}$ Pa + $^{0}_{-1}$ e

$$_{53}^{131}I \rightarrow _{-1}^{0}e + _{54}^{131}Xe$$

Net effect is to change a neutron to a proton

- Gamma ray release
- Gamma ray high energy photon
 - Example

$$^{238}_{92}U \rightarrow {}^{4}_{2}He + {}^{234}_{90}Th + 2^{0}_{0}\gamma$$

 Net effect is no change in mass number or atomic number.

- Positron production
 - Positron particle with same mass as an electron but with a positive charge
 - Examples

$$_{11}^{22}Na \rightarrow _{1}^{0}e + _{10}^{22}Ne$$

Net effect is to change a proton to a neutron.

- Electron capture
 - Example

$$^{201}_{80}$$
Hg + $^{0}_{-1}$ e \rightarrow $^{201}_{79}$ Au + $^{0}_{0}\gamma$
 \uparrow

Inner-orbital electron

Types of Radioactive Decay Summary

Table 19.1

Various Types of Radioactive Processes

Process	Example	
β -particle (electron) production	$^{227}_{89}\text{Ac} \rightarrow ^{227}_{90}\text{Th} + ^{0}_{-1}\text{e}$	
positron production	${}^{13}_{7}N \rightarrow {}^{13}_{6}C + {}^{0}_{1}e$	
electron capture	$_{33}^{73}$ As + $_{-1}^{0}$ e $\rightarrow _{32}^{73}$ Ge	
α -particle production	$^{210}_{84}$ Po $\rightarrow ^{206}_{82}$ Pb + $^{4}_{2}$ He	
γ-ray production	excited nucleus \rightarrow ground-state nucleus $+ {}^0_0 \gamma$ excess energy lower energy	

Nuclear Transformations

- Nuclear transformation change of one element to another
- Bombard elements with particles

Examples

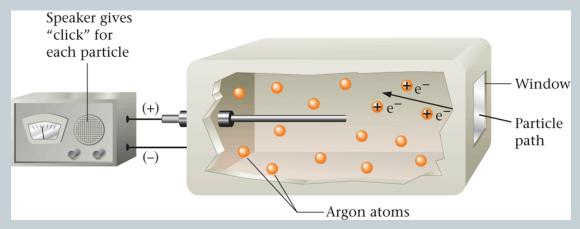
In 1919 Lord Rutherford observed the first **nuclear transformation**, the change of one element into another. He found that bombarding ¹⁴N with

particles produced the nuclide 17 O

Fourteen years later, Irene Curie and her husband Frederick Joliot observed a similar transformation from aluminum to phosphorus

$${}^{14}_{7}N + {}^{4}_{2}He \rightarrow {}^{17}_{8}O + {}^{1}_{1}H$$

$$^{27}_{13}$$
Al + $^{4}_{2}$ He $\rightarrow ^{30}_{15}$ P + $^{1}_{0}$ n


Nuclear Transformations

 Transuranium elements – elements with atomic numbers greater than 92 which have been synthesized

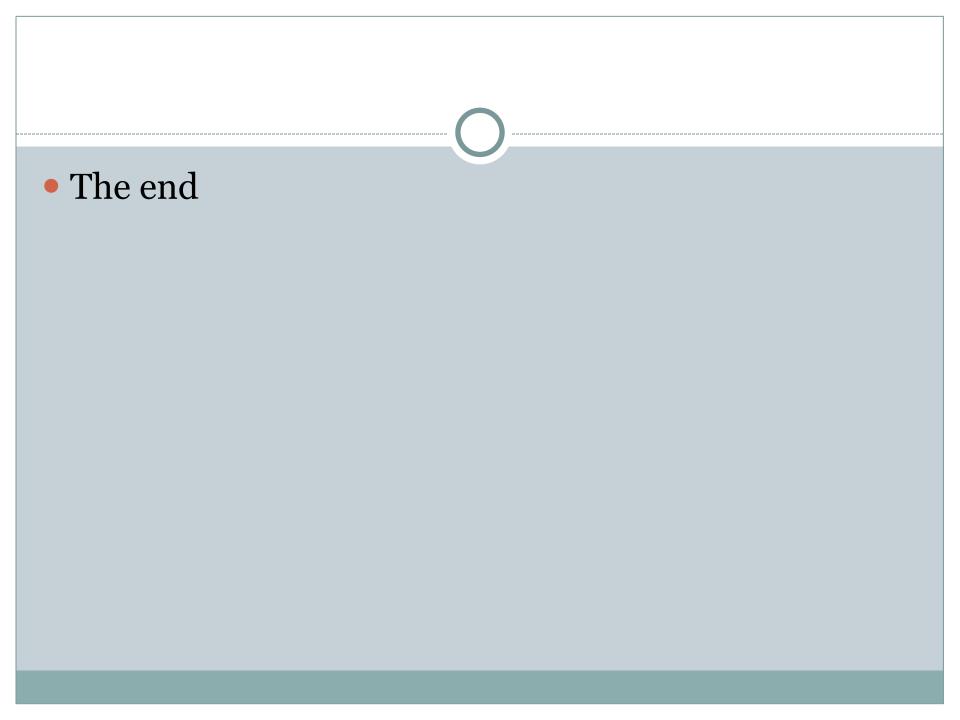
,	the Transuranium Elements	220 1 220 220
Neutron Bombardment	neptunium ($Z = 93$)	${}^{238}_{92}U + {}^{1}_{0}n \rightarrow {}^{239}_{92}U \rightarrow {}^{239}_{93}Np + {}^{0}_{-1}e$
	americium ($Z = 95$)	${}^{239}_{94}$ Pu + 2 ${}^{1}_{0}$ n $\rightarrow {}^{241}_{94}$ Pu $\rightarrow {}^{241}_{95}$ Am + ${}^{0}_{-1}$ e
Positive-Ion Bombardment	curium ($Z = 96$)	$^{239}_{94}$ Pu + $^{4}_{2}$ He $\rightarrow ^{242}_{96}$ Cm + $^{1}_{0}$ n
	californium ($Z = 98$)	$_{96}^{242}$ Cm + $_{2}^{4}$ He $\rightarrow _{98}^{245}$ Cf + $_{0}^{1}$ n or
		$^{238}_{92}U + {^{12}_{6}C} \rightarrow {^{246}_{98}Cf} + 4 {^{1}_{0}n}$
	rutherfordium ($Z = 104$)	${}^{249}_{98}\text{Cf} + {}^{12}_{6}\text{C} \rightarrow {}^{257}_{104}\text{Rf} + 4 {}^{1}_{0}\text{n}$
	dubnium ($Z = 105$)	${}^{249}_{98}\text{Cf} + {}^{15}_{7}\text{N} \rightarrow {}^{260}_{105}\text{Db} + 4 {}^{1}_{0}\text{n}$
	seaborgium ($Z = 106$)	${}^{249}_{98}\text{Cf} + {}^{18}_{8}\text{O} \rightarrow {}^{263}_{106}\text{Sg} + 4 {}^{1}_{9}\text{n}$

Detection of Radioactivity and Half-Life

 Geiger-Muller counter – instrument which measures radioactive decay by registering the ions and electrons produced as a radioactive particle passes through a gas-filled chamber

 Scintillation counter – instrument which measures the rate of radioactive decay by sensing flashes of light that the radiation produces in the detector

Detection of Radioactivity and Half-Life


Half-life – time required for half of the original sample of radioactive nuclides to decay

For example, if a certain radioactive sample contains 1000 nuclei at a given time and 500 nuclei (half of the original number) 7.5 days later, this radioactive nuclide has a half-life of 7.5 days

for Some of the Radioactive Nuclides of Radium			
Nuclide	Half-life		
²²³ ₈₈ Ra	12 days		
²²⁴ ₈₈ Ra	3.6 days		
²²⁵ ₈₈ Ra	15 days		
²²⁶ ₈₈ Ra	1600 years		
²²⁸ ₈₈ Ra	6.7 years		

Table 19.3

The Half-lives

