|       | L+100 1100 CC |
|-------|---------------|
| Name_ | 11117mc(2     |

## quiz PRACTICE Meaning of Derivatives 2020

1) Given the function f(x) below indicate if f(x), f'(x), and f''(x) are positive, negative or zero at each point.

| Point | f(x) | f'(x) | f"(x) |
|-------|------|-------|-------|
| 1     | -    | +     |       |
| 2     | 0    | Ó     |       |
| 3     |      | 6     | +     |
| 4     | 0    | 0     | 0     |
| 5     | +    | +     | 0     |
| 6     | +    |       |       |
| 7     | +    |       | +     |
| 8     | 7    | +     | +     |



- For equally high quality diamonds the cost (in thousands of dollars) is a function of weight (in carats). c=f(w).
  - a) A 2 carat costs \$6,000 is best expressed as:

(1) 
$$f(6)=2$$
 (2)  $f(2)=6$  (3)  $f'(2)=6$  (4)  $f'(6)=2$ 

b) Since large diamonds are more rare, the larger a diamond is the greater the cost per carat. Which of the following must be true?



(2) 
$$f'(x) < 0$$

$$(3) f'(x)=0$$

(4) 
$$f''(x) > 0$$
 (5)  $f''(x) < 0$  (6)  $f''(x) = 0$ 



3) Use the limit definition of the derivative to find the derivative of  $f(x) = -x^3 - 5x + 1$ 

$$f'(x) = \lim_{h \to 0} \frac{-(x+h)^3 - 5(x+h) + 1 - (-x^3 - 5x+1)}{h}$$

$$= \lim_{h \to 0} \frac{-\chi^{3} - 3\chi^{2}h - 3\chi h^{2} - h^{3} - 5\chi - 5h + \chi^{3} + 5\chi - 1}{h}$$

$$h\left(-3x^2-3xh-h^2-5\right)$$

$$= \lim_{h \to 0} \frac{h(-3x^{2}-3xh-h^{2}-5)}{h} = > -3x^{2}-3x(0)-(0)^{2}-5$$

$$f'(x) = -3x^2 - 5$$

4) Sketch the first derivatives of the functions below.



- 5) Sketch a function given the following information about its first and second derivative.
- CC) f'(x) < 0 for all x in the domain, f''(x) > 0 for x < 0f''(x) < 0 for x > 0
- f'(x) > 0 for x < 0f'(x) < 0 for x > 0 f''(x) < 0 for all x in the domain



- 6) The cost 'c' of drilling a well in dollars is a function of depth in feet 'd'.
- Explain the meaning of the following: (Include units!!!)
  - (a) f(85)=900 A 85 ft deep well (OST) \$ 900.



- by \$15/ft.
- (c) f"(x)=0.10 for all x. The cost per foot increases by \$1.10 per foot each foot.

Sketch f(x), f'(x), and f''(x) below:





