

 $\frac{2}{3}$ k. In which function(s) is the end behavior as $x \to \infty, y \to -\infty$ and as $x \to -\infty, y \to \infty$.

4

2) Find the value
$$p$$
 in the power function $y = kx^p$ given $f(2) = -0.75$ and $f(5) = -0.048$. (You must show algebraic work to get full credit for this problem.)

$$-.75 = k(a)^{P}$$

 $-.048 = k(5)^{P}$

$$\frac{-.75}{2^{p}} = \frac{-.048}{5^{p}}$$
$$2^{p}(-.048) = 5^{p}(-.75)$$

$$p = 3$$

$$\frac{-048}{-75} = \left(\frac{5}{2}\right)^{p}$$

$$\frac{8}{125} = \left(\frac{5}{2}\right)^{p}$$

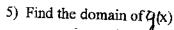
$$\frac{8}{125} = \left(\frac{5}{2}\right)^{p}$$

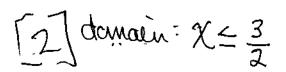
3) A power function in the form
$$y = kx^p$$
, passes through point $\left(\frac{1}{3}, \frac{2}{5}\right)$.

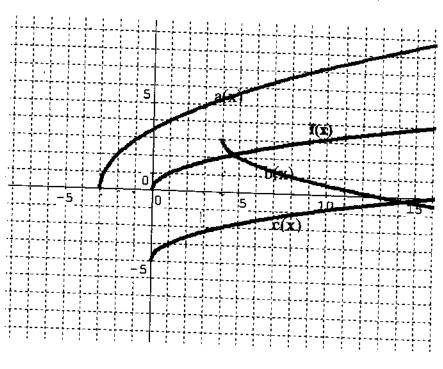
Find the value of k given that p = -2. (Show work.)

$$\frac{2}{5} = K(\frac{1}{3})^{-2} \xrightarrow{\frac{1}{9}} \frac{9}{9} K = \frac{2}{5} \cdot \frac{1}{9}$$

$$k = \frac{2}{45} \text{ or } .04$$


$$k = \frac{2}{45} \text{ or } .04$$


4) Given the power function
$$f(x) = x^{\frac{1}{2}}$$
 below, use the rules of shifting and stretching to determine the explicit equations of the following.


3)
$$a(x) = 2(x+3)^{1/2}$$

$$[3]b(x) = -(x-4)^{1/2} + 3$$

$$\frac{1}{2} c(x) = \frac{\chi'' 2 - 4}{2}$$

