Name	<u> </u>
1) For each function f(x) below, determine the number of	
FIND HOW MANY Critical Points Relative Maximums Relative Minimums Absolute Maximums Absolute Minimums Inflection Points	Domain is all x values between dashed lines.
Critical Points Relative Maximums Relative Minimums Absolute Maximums Absolute Minimums Inflection Points	Domain is all Reals.

- 2) The graph of f'(x) is shown below. Given that the original function, f(x), is defined for all real numbers, which must be true about the original function?
 - (1) f(x) has 1 critical point which is a local (relative) maximum.
 - \bigcirc f(x) has 1 critical point which is a local (relative) minimum.
 - (3) f(x) has 1 critical point which not a maximum or minimum.
 - (4) f(x) has no critical points.

Quiz Curve Sketching 2014 version 1.doc

3) Use the graph of f'(x) shown to determine <u>at which x-values</u> the original function f(x) has...

Relative maximum(s) at
$$x = 1000E$$

Relative minimum(s) at
$$x = \frac{-1}{2}$$

4) Use the **first derivative** <u>and</u> **second derivative** to determine the x-values of the critical points, maximums and minimums, concavity, and inflection points. Then sketch a curve that approximates the function.

$$f(x) = -\frac{1}{3}x^3 + x^2 + 15x$$

$$f'(x) = -x^2 + 2x + 15$$

$$0 = -1(X^2 - 2X - 15)_{-4}$$

$$0 = -1(x - 5)(x + 3)$$

Z

Critical Point(s): X = 5, X = 3

Local Maximum(s):
$$\chi = 5$$

Local Minimum(s):
$$\chi = -3$$

Inflection Point(s):
$$X = 1$$

$$-2x + 2 = 0$$

5) Given the **first** derivative of a function $f'(x) = 6(x-1)(x+2)^2$ determine the x-values of the critical points, maximums and minimums of the original function.

Critical Point(s): X = -2, X = /Maximum(s): X = -2, X = /

Minimum(s): $\chi = /$

6) Given the **second** derivative of a function $f''(x) = (x^2 - 9)(x^2 + 3x)$ determine the x-values of the inflection points of the original function.

Inflection Point(s): X = 0, X = 3

7) Given the **first** derivative of a function $f'(x) = \frac{4-x}{x}$ determine the x-values of

the critical points, maximums, minimums, and inflection points of the original function. Then sketch a curve that approximates the function.

 $f'(x) = \frac{-1(x)-(4-x)i}{\sqrt{2}}$ Critical Point(s) at x = 0, 4

Maximum(s) at $x = \frac{\mathcal{L}}{2}$ $F'(x) = -\frac{X-4+X}{X^2}$

Minimum(s) at x =

Inflection Point(s) at x = 1000Ef"(x) = -4/x²

(always negative)

(on cave down

Sketch of f(x):

Bonus: The length of a rectangle is decreasing at a rate of 2 cm/sec while the width is increasing at a rate 3 cm/sec. When the length is 6 cm and the width is 4 cm find the rate of

change of the area.

$$A = XY$$

$$\frac{dX}{dt} = \frac{dX}{dt}Y + X\frac{dY}{dt}$$

$$\frac{dX}{dt} = 3$$

$$\frac{dA}{dt} = (41)(3)(6) + (4)(-2) \left[\frac{dA}{dt} = 10 \right]$$