Arranging the Elements

Objectives

- Describe how Mendeleev arranged elements in the first periodic table.
- Explain how elements are arranged in the modern periodic table.
- Compare metals, nonmetals, and metalloids based on their properties and on their location in the periodic table.
- Describe the difference between a period and a group.

I. Discovering a Pattern

- A. Periodic Properties of the Elements Mendeleev saw that when the elements were arranged in order of increasing atomic mass, those that had similar properties occurred in a repeating pattern.
- B. Predicting Properties of Missing Elements When Mendeleev was forming the periodic table, all of the elements had been discovered yet. He used the periodic table to accurately predict the properties of the missing elements.

http://t1.gstatic.com/images?q=tbn:ANd9GcTQPq LSvEwLpDzFGI7LRkCurtFTgi 2T6uwPYBK0ckDBRci9lCQ

H 1.01	II	Ш	IV	٧	VI	VII						
Li 6.94	Be 9.01	B 10.8	C 12.0	N 14.0	O 16.0	F 19.0						
Na 23.0	Mg 24.3	Al 27.0	Si 28.1	P 31.0	S 32.1	CI 35.5	VIII					
K 39.1	Ca 40.1		Ti 47.9	V 50.9	Cr 52.0	Mn 54.9	Fe 55.9	Co 58.9	Ni 58.7			
Cu 63.5	Zn 65.4			As 74.9	Se 79.0	Br 79.9						
Rb 85.5	Sr 87.6	Y 88.9	Zr 91.2	Nb 92.9	Mo 95.9		Ru 101	Rh 103	Pd 106			
Ag 108	Cd 112	In 115	Sn 119	Sb 122	Te 128	I 127						
Ce 133	Ba 137	La 139		Ta 181	W 184		Os 194	Ir 192	Pt 195			
Au 197	Hg 201	Ti 204	Pb 207	Bi 209								
			Th 232		238							

II. Changing the Arrangement

A. Adding Elements All of the more than 30 elements discovered since 1914 follow the periodic law. The periodic law states that the repeating chemical and physical properties of elements change periodically with the elements' atomic numbers.

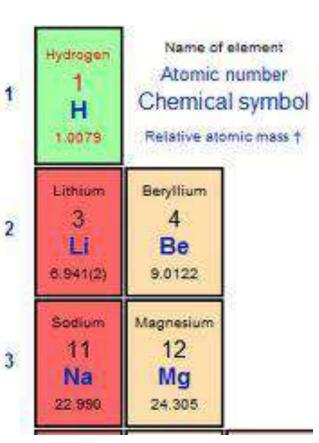
• Periodic Table

THE PERIODIC TABLE

	$\stackrel{1}{IA}$																	18 VIIIA
1	1 1.008 Hydrogen	2 IIA											13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	He 2 4.00 Helium
2	3 6.94 Lithium	Be 4 9.01 Beryllium		SYMBOL 1 — ATOMIC NUMBER 1.008 — ATOMIC WEIGHT Hydrogen — NAME						()=	= ESTIMAT	ES	B 5 10.81 Boron	6 12.01 Carbon	7 14.01 Nitrogen	8 16.00 0xygen	Fluorine	Ne 10 20.18 Neon
3	Na 11 22.99 Sodium	Mg 12 24.31 Magnesium	3 IIIB	4 IVB	5 VB	6 VIB	7 VIIB	8	9 VIIIB	10	11 IB	12 IIB	13 26.98 Aluminum	\$1 14 28.09 Silicon	P 15 30.97 Phosphorus	\$ 16 32.07 Sulfur	17 35.45 Chlorine	18 39.95 Argon
4	19 39.10 Potassium	20 40.08 Calcium	SC 21 44.96 Scandium	Ti 22 47.88 Titanium	23 50.94 Vanadium	Cr 24 52.00 Chromium	25 54.94 Manganese	Fe 26 55.85 Iron	27 58.93 Cobalt	28 58.69 Nickel	29 63.55 Copper	Zn 30 65.39 Zinc	Ga 31 69.72 Gallium	Ge 32 72.61 Germanium	As 33 74.92 Arsenic	Se 34 78.96 Selenium	Br 35 79.90 Bromine	36 83.80 Krypton
5	Rb 37 85.47 Rubidium	38 87.62 Strontium	39 88.91 Yttrium	Zr 40 91.22 Zirconium	Nb 41 92.91 Niobium	Mo 42 95.94 Molybdenum	Tc 43 (97.9) Technetium	R11 44 101.07 Ruthenium	Rh 45 102.91 Rhodium	Pd 46 106.42 Paliadium	Ag 47 107.87 Silver	Cd 48 112.41 Cadmium	49 114.82 Indium	50 118.71 Tin	51 121.76 Antimony	Te 52 127.60 Tellurium	53 126.90 lodine	Xe 54 131.29 Xenon
6	Cs 55 132.91 Cesium	Ba 56 137.33 Barium	La 57 138.91 Lanthanum	72 178.49 Hatnium	Ta 73 180.95 Tantalum	74 183.85 Tungsten	75 186.21 Rhenium	Os 76 190.2 0smium	77 192.22 Iridium	Pt 78 195.08 Platinum	79 196.97 Gold	Hg 80 200.59 Mercury	81 204.38 Thallium	Pb 82 207.2 Lead	83 208.98 Bismuth	Po 84 (209) Polonium	85 (210) Astatine	Rn 86 (222) Radon
7	87 223.02 Francium	Ra 88 226.03 Radium	Ac 89 227.03 Actinium	Rf 104 (261) Rutherfordium	105 (262) Dubnium	106 (263) Seaborgium	Bh 107 (262) Bohrium	HS 108 (265) Hassium	109 (266) Meitnerium	Unnamed Discovery 110 Nov. 1994	Unnamed Discovery 111 Nov. 1994	Unnamed Discovery 112 1996		Unnamed Discovery 114 1999		Unnamed Discovery 116 1999		Unnamed Discovery 118 1999
	ALKALI METALS	ALKALI EARTH METALS						-		_							HALOGENS	NOBLE GASES
	HAYDEN			LANTHANIDES	58 140.12 Cerium	Pr 59 140.91 Praeseodymium	Nd 60 144.24 Neodymium	Pm 61 (145) Promethium	Sm 62 150.36 Samarium	63 152.97 Europium	Gd 64 157.25 Gadolinium	Tb 65 158.93 Terbium	Dy 66 162.50 Dysprosium	Ho 67 164.93 Holmlum	68 167.26 Erbium	69 168.93 Thulium	70 173.04 Ytterbium	71 174.97 Lutetium
	MCNEIL SPECIALTY PRODUCTS		ng.com	ACTINIDES	Th 90 232.04 Thorium	Pa 91 231.04 Protacinium	92 238.03 Uranium	Np 93 237.05 Neptunium	Pu 94 (240) Plutonium	95 243.06 Americium	96 (247) Gurium	97 (248) Berkelium	Cf 98 (251) Californium	Es 99 252.08 Einsteinium	100 257.10 Fermium	Md 101 (257) Mendelevium	102 259.10 Nobelium	103 262.11 Lawrencium
	www.hmpublishing.com Thorium Protacinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Wendelevium Nobelium Lawrencium																	

III. The Periodic Table and Classes of Elements

- **A. Metals** Most elements are metals. Metals are found to the left of the zigzag line on the periodic table.
- B. **Nonmetals** Nonmetals are found to the right of the zigzag line on the periodic table.
- C. **Metalloids** Metalloids, also called semiconductors, are the elements that border the zigzag line on the periodic table.



IV. Decoding the Periodic Table

A. Each Element Is Identified by a Chemical Symbol Each square on the periodic table includes an element's name, chemical symbol, atomic number, and atomic mass.

- B. Rows Are Called *Periods* Each horizontal row of elements (from left to right) on the periodic table is called a period.
- C. Columns Are Called *Groups* Each vertical column of elements (from top to bottom) on the periodic table is called a group.

