Name	
Date	Per

PROBLEM SET: 12.1-12.2 - Mole Ratios (Interpreting and Using Chemical Equations)

- 1) Your school club has "adopted" a local nursing home and provides welcoming packages to new residents. Each welcoming package contains: 1 toothbrush (B), 3 washcloths (W), 1 tube of toothpaste (P), 2 decks of cards (C), and 3 bottles of skin lotion (L).
- A) Calculate the number of **each item** needed for 45 welcoming packages.
- B) Assuming you have excess amounts of all ingredients, how many welcoming packages would you be able to put together if you had 111 washcloths?
- 2) A cookie recipe calls for: 1.25 cups butter; 1.5 cups sugar; 2 eggs; 1 cup brown sugar; 2.75 cups flour; 1 teaspoon salt; 1 teaspoon baking soda; 14 ounces chocolate chips. **This recipe will produce 54 cookies.

- A) Calculate the amount of <u>each ingredient</u> needed to produce 81 cookies.
- B) Assuming you have excess amounts of all ingredients, how many cookies would you be able to make if you had 9 eggs?

Chemistry / Stoichiometry Problems:

3) Consider the reaction: $N_2 + H_2 \rightarrow NH_3$

Balance the equation.

How many moles of hydrogen are needed to completely react with 6.8 moles of nitrogen?

4) Consider the reaction: KClO₃ → KCl + O₂

Balance the equation.

How many moles of oxygen are produced by the decomposition of 11.5 moles of potassium chlorate?

5) Consider the reaction: Balance the equation. How many moles of hydroge amount of hydrochloric acid?		+ roduced	HCI from th	→ ne react	ZnCl₂ ion of 6		H ₂ es of zinc with an excess
6) Consider the reaction: Balance the equation. How many moles of oxygen a	C₃H ₈ are nece		O₂ o react	→ comple	CO₂ etely with	+ h 14.0 r	H₂O moles of propane (C₃H ₈)?
7) Consider the reaction: Balance the equation. How many moles of potassiu excess potassium phosphate			AI(NO		→ 3.4 mol	KNO ₃ es of al	+ AIPO ₄ uminum nitrate react with
8) Consider the reaction: Balance the equation. How many moles of carbon combust?	C₂H₂ dioxide v		O ₂	→ d when	CO₂ 7.5 mo	+ les of a	H ₂ O cetylene (C ₂ H ₂) completely
9) Consider the reaction: Balance the equation. How many moles of potassiu	K m are n		H₂O to produ		KOH 2 moles		H₂ ogen gas (H₂)?
10) Consider the reaction:	H₂S	+	O ₂	-	SO ₂	+	H ₂ O

10) Consider the reaction: $H_2S + O_2 \rightarrow SO_2 + H_2O$ Balance the equation. How many moles of sulfur dioxide are produced when 86.7 moles of oxygen react with excess hydrogen sulfide (H_2S) ?