Robbinsville High School

Mathematics Department 155 Robbinsville-Edinburg Road

155 Robbinsville-Edinburg Ro Robbinsville NJ 08691

Dear Parents and Guardians,

We would like to take this opportunity to thank you for your support this year. Attached you will find a packet for math reinforcement for your student's use over the summer. This packet should be completed and returned to school with your student on the *first full day of school*. September is filled with review, but with completion of this packet, the review will come very naturally. The packet will be *collected* and *graded* as a large *homework grade* based on *completion* and *effort*.

In addition to this packet, we have provided for your student some resources for extra help. Below, you will find a variety of websites your student may want to visit over the summer to refresh their memory about the topics discussed in this packet.

Math Forum at Drexel University: http://mathforum.org/dr.math/

Purple Math: http://www.purplemath.com/

Math Is Fun?: http://www.mathsisfun.com/

Cut the Knot: http://www.cut-the-knot.org/MathHelp.shtml

Cool Math (Algebra I): http://coolmath.com/algebra/Algebra1/index.html

Thank you again for your support throughout the year and we wish you a happy and safe summer vacation.

Happy Summer!

Robbinsville High School Mathematics Department

Directions: Factoring quadratic expressions with a = 1. Factor each completely.

2)
$$x^2 + 6x - 40$$

3)
$$x^2 - 15x + 56$$

4)
$$x^2 - 6x + 8$$

5)
$$x^2 - 14x + 40$$

6)
$$x^2 - 3x - 54$$

Directions: Factoring quadratic expressions with a > 1. Factor each completely.

7)
$$3x^2 + 4x + 4$$

8)
$$3x^2 - 10x - 25$$

9)
$$3x^2 - 7x - 10$$

10)
$$3x^2 + 23x + 40$$

11)
$$3x^2 - x - 2$$

12)
$$4x^2 - 27x + 18$$

Directions: Factoring quadratic expressions with Difference of Two Squares. Factor each completely.

14)
$$9x^2 - 1$$

15)
$$16x^2 - 25$$

16)
$$25x^2 - 16$$

17)
$$p^2 - 25$$

18)
$$16x^2 - 9$$

19)
$$3x^2 + 9x + 6$$

20)
$$6x^4 - 6x^3 - 36x^2$$

21)
$$10x^3 - 44x^2 + 16x$$

22)
$$30x^2 + 66x - 216$$

Directions: Solve for the zeros by factoring or by using quadratic formula if needed.

$$23) \quad x^2 + 9x - 36 = 0$$

$$24) 6x^2 - 13x - 5 = 0$$

$$25) 4x^2 + 7x - 10 = 0$$

$$26) \qquad -x^2 + 6x + 1 = 0$$

Directions: Divide each of the polynomials using long division.

27)
$$(4x^2 - 9) \div (2x + 3)$$

28)
$$(2x^2 + 5x - 3) \div (x - 3)$$

Directions: Divide each of the polynomials using long division.

29)
$$(11x + 20x^2 + 12x^3 + 2) \div (3x + 2)$$

30)
$$(12x^3 + 2 + 11x + 20x^2) \div (2x + 1)$$

Directions: Divide each of the polynomials using synthetic division.

31)
$$(p^4 + 5p^3 - 11p^2 - 25p + 29) \div (p+6)$$

32)
$$(y^4 - 8y^3 + 10y^2 + 2y + 4) \div (y - 2)$$

33)
$$(8v^5 + 32v^4 + 5v + 20) \div (v + 4)$$

34)
$$(3x^3 - 4x^2 - 17x + 6) \div (3x - 1)$$

Directions: Simplify completely. State any restrictions on the domain. (remember to factor when necessary).

35)
$$\frac{2x+6}{4x-12}$$

36)
$$\frac{x^2+9x+2}{2x+8}$$

$$37) \frac{6x + 24}{x^2 + 7x + 1}$$

38)
$$\frac{y^2-2y-1}{4} \cdot \frac{8}{y+3}$$

$$39)\,\frac{5n+15}{4n+8}\cdot\frac{2n+4}{3n+9}$$

$$40)\frac{x^2-2x}{6} \div \frac{3x-6}{x}$$

$$41)\,\frac{m^2-2m-8+15}{8m+24}\div\frac{2m-8}{m^2+7m+1}$$

42)
$$\frac{x^2-x-12}{x-4} \div \frac{2x+6}{x-5}$$

43)

Domain: Range: _____

Increasing:_______ Decreasing:______

Constant:

Maximum: Minimum:

X intercept:______Y intercept_____

f(0): For what values of x is f(x)=0?

44)

Domain:_____ Range:____

Increasing:_______Decreasing:_____

Constant:_____

Maximum:_____ Minimum:_____

X intercept: Y intercept_

f(1): For what values of x is f(x)=2?

45)

Domain: Range:____

Increasing:_______Decreasing:_____

Constant:_____

Maximum:_____Minimum:____

X intercept:______Y intercept_____

f(-1): For what value(s) of x is f(x)=4?

Directions: Evaluate each for the function $f(x) = x^2 - 2x + 1$.

48)
$$f(x + 1)$$

49)
$$f(x-2)$$

50)
$$f(2x^2)$$