PreAP Chemistry Year At a Glance Calendar

Hi! My school year starts August 14th. This is ACTUALLY my lesson plan document. So, if you see things changing or moving or new things added, it's because I'm looking at this thing EVERY DAY. A lot of the online only assignments will have paper alternatives and a lot of the paper assignments will gain online options. This will hopefully allow for some more choice in my room.

As the year goes on, if you need help, email me: <u>linda.detwiler@webster.kyschools.us</u>. Don't hesitate to reach out! I love to help people.

Good luck this year. -Linda

Hey Linda! Add vocab activities. :) Want Standard? Go here Template: here AP Physics 1 here OAIM here

Week	Торіс	Week	Торіс	Week	Торіс	Week	Торіс
1	Unit One: Intro to Advanced Chemistry	10	<u>Unit Five:</u> Electrons	19	Unit Eight: Chemical Reactions	28	Unit Eleven: Reaction Kinetics
2		11	<u>Unit Five:</u> Electrons	20	Unit Eight: Chemical Reactions	29	Unit Eleven: Reaction Kinetics
3		12	<u>Unit Five:</u> Electrons	21	Unit Eight: Chemical Reactions	30	<u>Unit Twelve:</u> Solutions
4		13	Unit Six: Periodic Table and Trends	22	Unit Eight: Chemical Reactions	31	<u>Unit Twelve:</u> Solutions
5	<u>Unit Three</u> : Matter	14	Unit Six: Periodic Table and Trends	23	Unit Nine: The Mole	32	Unit Twelve: Solutions
6	<u>Unit Three</u> : Matter	15	<u>Unit Seven:</u> Nomenclature	24	<u>Unit Ten</u> : Stoichiometry	33	Unit Thirteen: Acid/Base
7	<u>Unit Three</u> : Matter	16	<u>Unit Seven:</u> Nomenclature	25	<u>Unit Ten</u> : Stoichiometry	34	Unit Thirteen: Acid/Base
8	Unit Four: The Atom	17	Unit Seven: Nomenclature	26	Unit Ten: Stoichiometry	35	Unit Sixteen: Nuclear (optional)
9	Unit Four: The Atom	18	Midterm	27	Unit Eleven: Reaction Kinetics	36	Final Exam

Melissa Gable's <u>Pacing Guide</u> <u>Coverage levels for CB Alignment</u>, PreAP to AP

Resources for Breakout Rooms: here My First Breakout!

MC Questions w/ Answers (You'll need to type them up...) here here here

John Erickson's Worksheets here

ACT Science Practice:

https://docs.google.com/document/d/11iw44HSSCN2PjFX7mQSsuXVzgi1vxzXR-2Fnonw H0I/

Key Terms

- 1. PH: Prentice Hall Chemistry
 - a. Wilbraham, Antony C. Prentice Hall Chemistry. Pearson/Prentice Hall, 2008.
- 2. LO: Learning Objects
 - a. Adrian Dingle's List of LOs for AP Chemistry

3.

Midterm

Review (1-7)

Midterm 2017

Midterm 2018 (1-7)

Unit One: Introduction to Advanced Chemistry

Time: 4 Week

DCIs	SEPs	CCCs	College Board
ETS1.1, ETS1.2, ETS1.3,	Asking questions	Cause and Effect, Scale,	
ETS1.4	Planning and carrying out	Proportion, and Quantity	
	investigations, Using		
	mathematics and		
	computational thinking		
	Textbook	Sections	
Zum	dahl	Prentice Hall	
1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.9		1.1, 1.2, 1.3, Appendix D, 3	.1-3.4, Appendix C

Learning Targets: By the end of the unit, a student in this course should be able to...

- 1. Describe chemistry in a general sense.
- 2. Identify the five areas of chemistry.
- 3. Explain why the study of chemistry is important.
- 4. Explain how chemists impact multiple studies.
- 5. Work in a lab setting following published safety guidelines.
- 6. Use the steps of the scientific method to develop an experiment using the OAIM (Object, Action, Instrument, Measurement) method.
- 7. Answer a proposed question with experimental data using CER (Claim, Evidence, Reasoning).
- 8. complete a lab write up using the Four Corner method.
- 9. evaluate the accuracy and precision of a set of measurements.
- 10. report numbers to the correct number of significant figures, both measurements and calculations.
- 11. express numbers in scientific notation and complete calculations in scientific notation WITHOUT a calculator.
- 12. write measurements using the correct number of significant figures.
- 13. convert between similar units.
- 14. experimentally determine the density of solids and liquids.
- 15. identify an unknown substance using density.

Experiment

- 1. work with measurements EXCLUSIVELY in the metric system, with emphasis on length, volume, mass, temperature, and energy.
- 2. perform dimensional analysis.

Vocabulary					
 matter chemistry organic chemistry inorganic chemistry biochemistry analytical chemistry measurement scientific notation accuracy precision accepted value 	 physical chemistry technology macroscopic microscopic biotechnology pollutant green chemistry International System of Units (SI) meter experimental value 	 scientific method observation hypothesis experiment liter gram weight temperature celsius scale percent error significant figures 	 independent variable dependent variable theory scientific law density Kelvin scale absolute zero energy joule calorie error 		

Activity Schedule

Day	Standards Covered	Activity Bellwork Slides for the Unit
1		Opening Activities/ Syllabus/ Course Expectations PP Notes: Course Highlights Make a 3 column chart in notebook - Topic - Highlights - Why this is important HW: Letter to me
2		Finish Course Expectations
3		Safety Contract Spanish English (20 minutes) Notes: Safety Highlights - Series of T-charts: Topic on top, bottom left: Overview Bottom Right: Why is this important (20 minutes) Safety quiz Safety Pretest Spanish (Department policy requires an 80% or better for work in wet labs)
4		What is chemistry? Notes Article: (Worksheet) Who invented "sticky notes?"
5		The Scientific Method Notes OAIM Lab Format (For Teachers: How to OAIM) Claim-Evidence-Reasoning
6		Pretest: Math for Chemistry
7		Day One: What is density? Density PhET
8		Measurements with Sig Figs
9		(Goes in notebook after grading) (I do) Day Two: Density of Known Objects (reg solids) Focus: Writing a procedure, materials list, and data table
10		(Goes in notebook after grading) (We do) Day Three: Density of Known Objects (irr solids) Focus: Writing a procedure, materials list, and data table
11		(Goes in notebook after grading) Day Four: (You Do) Density of Known Objects (liquids) Focus: Writing a procedure, materials list, and data table
12		Work Day
13		Quiz: Density Activity

14	Day Six: <u>Identification of an Unknown Solid</u> Focus: Conclusions (<u>CER</u>)
15	Day Seven: <u>Temperature and Density of Liquids</u> Focus: Conclusions (<u>CER</u>)
16	Dimensional Analysis video video for introduction Ladder Method more help Practice
17	Lab Report Quiz Grading Rubric
18	SI Units and Conversions
19	Work Day/ Remediation
20	Math for Chemistry Review (assign for HW) KEY TEST KEY Version 2 KEY

CER Rubric Math for Chem folder

Activities/Worksheets	Notes	Labs	Quizzes/Tests
Safety First	Starting with Safety	Acc vs. Prec	Flinn Safety Quiz
<u>Fundamentals of</u>	Accuracy vs. Precision	Acc vs. Prec 2	
Experimental Design	Metric Handout	Accuracy vs. Precision	
Scientific Process	Sig Figs	Lab (2 days)	
Significant Digits and	SI Units		
Measurement		HW	
Significant Zeros			
Density Exit Ticket			
Conversion HW			
Book Hunt:			
Measurement and Molar			
Conversions 2 3 4 5			
Acc vs Prec HW			
SciNot <u>1 2 3 4 5 6</u>			
Roadtrip			
Rem/En: Math for Chem			
Percent Error <u>1</u> <u>2</u>			
Sig Figs <u>1 2 3 4 5</u>			
Density: A Mystery			
Introduction			
<u>KEY</u>			

Unit Two: Properties of Matter

Timeline: 3 Weeks

Properties of Matter						
DCIs	SEPs	CCCs	College Board			
HS.PS.1.3 Planning and Carrying Out Investigations		Patterns	2.7, 2.10, 3.10,			
	Textboo	k Sections				
Zun	ndahl	Pre	ntice Hall			
1.10		2.1-2.4				

Learning Targets: By the end of the unit, a student in this course should be able to...

- 1. use physical and chemical properties of matter to classify matter.
- 2. distinguish between the three states of matter.
- 3. classify a change as physical or chemical.
- 4. design an experiment to separate mixtures of substances based on bulk properties.
- 5. classify mixtures.
- 6. describe and perform multiple methods of chemical separation.

7.

- 8. identify when a reaction is occuring.
- 9. apply the law of conservation of matter.

Experimental

1. distinguish between the multiple types of matter.

- 1. (2.7) The student is able to explain how solutes can be separated by chromatography based on intermolecular interactions.
- 2. (2.10) The student can design and/or interpret the results of a separation experiment (filtration, paper chromatography, column chromatography, or distillation) in terms of the relative strength of interactions among and between the components.
- 3. (3.10) The student is able to evaluate the classification of a process as a physical change, chemical change, or ambiguous change based on both macroscopic observations and the distinction between rearrangement of covalent interactions and noncovalent interactions.

	Vocabulary					
 mass volume physical change mixture solution law of conservation of matter 	 extensive property intensive property heterogeneous mixture homogeneous mixture product reactant 	 substance physical property distillation chromatography element compound precipitate filtration 	 solid liquid gas vapor chemical change physical change chemical property chemical reaction phase 			

Monday	Tuesday	Wednesday	Thursday	Friday
Properties of Matter Notes Handout Homework	(Paused: Remediate Unit Two Rewrote the test)	(Paused: Remediate Unit Two Reteach/Analyze the questions)	(Paused: Remediate Unit Two Retest: Unit Two)	Properties of Matter Day 2 <u>Handout</u>
White Powder Lab HW: Properties of Matter on GC	(1-10) Quiz: Properties of Matter Less than a 70% must re-quiz	BW: Properties of Matter Pin-Up Oobleck Lab Prop. HW Due	Notes: Chromatography and Distillation HW (link)	(HAHAHAHA Sub day) Kids worked on Chromatography HW
(2, 3, 6, 8) Tie Dye Chromatography Lab *Be careful with RED. It will die EVERYTHING in the vinegar wash. (about a 15% soln is fine) OR (no shirt) Chromatography Simulation	Properties of Matter Separation and Identification Rubric	Properties of Matter Separation and Identification	Unit Review	Unit Exam Key *Don't get too spoiled. I don't normally type up my keys like this :) (Question 10) Notebook Check

Properties of Matter Folder

Additional Assignments					
Activities/Worksheets Notes Labs Quizzes/Tests					
Classification of Matter Matter Remediation Stations: Matter	Nature of Science	Classifying Matter 1+2+3=Black! Table Separation Lab	Matter Quiz Matter Quiz (Forms) Quiz: Properties of Matter		

Unit Four: The Atom

Time: 2 Week

The Atom						
DCIs	SEPs	CCCs	College Board			
HS.PS.1-1	Developing and Using	Patterns	1.1, 1.17, 3.5, 3.6			
HS.PS.1.2	Models	Scale, Proportion, and				
	Constructing	Quantity				
	Explanations and					
	Designing Solutions					
Textbook Sections						
Zun	ndahl	Prenti	ce Hall			
2.1, 2.2, 2.3, 2.4, 2.5		4.1-4.3				

Learning Targets: By the end of the unit, a student in this course should be able to...

- 1. describe the historical process by which the atom was discovered and refined.
- 2. describe the structure of the atom and explain the experiments done that discovered each part.
- 3. distinguish among atoms, based on protons, neutrons, electrons, atomic mass, atomic number, and/or charge.
- 4. calculate average atomic mass.

- 1. (1.1) The student can justify the observation that the ratio of the masses of the constituent elements in any pure sample of that compound is always identical on the basis of the atomic molecular theory.
- 2. (1.17) The student is able to express the law of conservation of mass quantitatively and qualitatively using symbolic representations and particulate drawings.

Vocabulary						
 atom nucleus atomic number atomic mass Democritus Ernest Rutherford Cathode Ray Experiment Dalton's atomic model 	 Dalton's Atomic Theory mass number periodic table John Dalton Louis de Broglie Plum Pudding model Bohr Atom 	 electron neutron isotope period JJ Thomson Werner Heisenberg Rutherford's atomic model 	 cathode ray proton atomic mass unit (amu) group Hantaro Nagaoka James Chadwick Erwin Schrodinger Schrodinger's atom 			

Monday	Tuesday	Wednesday	Thursday	Friday
Discovery Square Activity <u>Teacher</u>	History of the Atom PP	History of the Atom Distinguishing	Quiz: PEN Count and Periodic Table	Build An Atom
	Project (see Option 2) Option 1	Among Atoms Homework	(Paper Version) Build An Atom	
	Remediation Day Wrong Answer Analysis	Average Atomic Mass <u>Calculations</u> Notes	Atomic Mass of Candium <u>Activity</u>	Exam: The Atom Review Notebook Check Retest: Atom Math
(Remediation) Day 1: Atomic Theory	(Remediation) Day 2: Percent Abundance edpuzzle wkst	(Remediation) Day 3: Percent Composition edpuzzle wkst		

The Atom **folder**

Additional Assignments					
Activities/Worksheets	Notes	Labs	Quizzes/Tests		
PEN Count Rem. PEN Count Enrichment					

Unit Five: The Electron

Time: 2 Week

The Electron				
DCIs	SEPs	CCCs	College Board	
HS.PS.1.3	Developing and using	Systems and System	1.9, 1.10, 1.12, 1.15, 1.13,	
	models	Models		
	Textbook	x Sections		
Zur	ndahl	Prent	rice Hall	
7.1, 7.5-7.9, 7.11		5.1-5.3		

Learning Targets: By the end of the unit, a student in this course should be able to...

- 1. explain the development of the atomic model, with emphasis on the shape of the electron cloud.
- 2. explain how the quantum mechanical model of the atom explains the electrons of an atom.
- 3. describe an atom based on its principal energy levels.
- 4. write the electron configuration- including orbital notation, energy levels, standard electron configuration, Lewis Structure, and noble gas configuration- of an atom using Aufbau's principle, Pauli Exclusion Principle, and Hund's Rule.
- 5. identify an element based on its electron configuration(s).
- 6. describe the atomic emission spectra and explain how the atomic emission spectra is used in chemistry.
- 7. I can describe and apply the relationship between wavelength, frequency, and energy of light.

- 1. LO 1.5 The student is able to explain the distribution of electrons in an atom or ion based upon data.
- 2. LO 1.12 The student is able to explain why a given set of data suggests, or does not suggest, the need to refine the atomic model from a classical shell model with the quantum mechanical model.
- 3. LO 1.13 Given information about a particular model of the atom, the student is able to determine if the model is consistent with specified evidence.
- 4. LO 1.15 The student can justify the selection of a particular type of spectroscopy to measure properties associated with vibrational or electronic motions of molecules.

	Vocabulary					
 energy level quantum quantum mechanical model Heisenberg Uncertainty Principle 	 electron configuration aufbau principle Pauli exclusion principle atomic orbital 	Hund's Ruleamplitudewavelengthfrequencyhertz	 electromagnetic radiation spectrum atomic emission spectrum ground state photons 			

Monday	Tuesday	Wednesday	Thursday	Friday
Reteach: U4	Reteach: U4	Reteach: U4	.23 Electron	24 Annberg
			Configuration	Learner: Electron
			<u>PP</u>	Configuration
			<u>Notes</u>	
			<u>HW</u>	
			Write the full	
			electron	
			configuration, full	
			orbital notation,	
			noble gas	
			configuration, and	
			noble gas orbital	
			notation for	
			elements 1-30.	
25 Intro <u>Video</u>	26 Quantum	29 Waves and	30 Flame Test Lab	QUIZ:
Quantum	Mechanics	Photons		Part 1: Retest Unit 3
Mechanics	<u>Bingo 1 2</u>			Part 2: Electron
<u>PP</u>		<u>PP</u>		Configuration, QN,
<u>Notes</u>	OR	<u>Notes</u>		and Light Math
		<u>Practice</u>		
Write the quantum	Quantum Practice			
number set for				
every electron in				
elements 1-15.				
	XXXX	31 The Electron		2 <u>Review</u>
		Breakout Room		
				Electron Test

The Electron Folder The Wave folder

Additional Assignments				
Activities/Worksheets	Notes	Labs	Quizzes/Tests	
Ions Electron Configuration Molecular Geometry Battleship! Practice Exit Ticket 1 2 3 Card Sort 8 Practice Practice Arrangements	Electron Configuration Chart Rules for Electron Config		Lewis Structures PES: https://www.youtube.co m/watch?v=7ofqZ9h5-t 0 Test Question	

Unit Six: Periodic Table and Trends

Timeline: 2 weeks

Periodic Table and Trends					
DCIs	SEPs	CCCs	College Board		
HS.PS.1.2	Constructing	Patterns	1.5, 1.6, 1.7, 1.9, 1.10,		
	Explanations and		1.13, 1.15, 2.17, 1.11,		
	Designing Solutions				
	Textbool	x Sections			
Zumdahl Prentice Hall			ntice Hall		
2.7,7.11, 7.12, 7.13, Chapter 20-22		6.1-6.3, Appendix A			

Learning Targets: By the end of the unit, a student in this course should be able to...

- 1. I can identify trends in ionization energy, electronegativity, and the relative sizes of atoms and ions.
- 2. I can identify the different parts of the periodic table: metals, nonmetals, metalloids, representative elements, alkali metals, alkaline earth metals, halogens, noble gases, transition metals and the lanthanide and actinide series.
- 3. I can predict the relative sizes of neutral atoms in comparison to their positive or negative ions.
- 4. I can identify the probable charge on the ion of a main group of elements based upon its position on the periodic table.
- 5. I can identify the number of valence electrons in any element on the periodic table.

College Board

- 1. LO 1.6 The student is able to analyze data relating to electron energies for patterns and relationships.
- 2. LO 1.7 The student is able to describe the electronic structure of the atom, using PES data, ionization energy data, and/or Coulomb's Law to construct explanations of how the energies of electrons within shells in atoms vary.
- 3. LO 1.9 The student is able to predict and/or justify trends in atomic properties based on location on the periodic table and/or the shell model.
- 4. LO 1.10 Students can justify with evidence the arrangement of the periodic table and can apply periodic properties to chemical reactivity.
- 5. LO 1.11 The student can analyze data, based on periodicity and the properties of binary compounds, to identify patterns and generate hypotheses related to the molecular design of compounds for which data are not supplied.
- 6. LO 1.13 Given information about a particular model of the atom, the student is able to determine if the model is consistent with specified evidence.
- 7. LO 1.15 The student can justify the selection of a particular type of spectroscopy to measure properties associated with vibrational or electronic motions of molecules.
- 8. LO 2.17 The student can predict the type of bonding present between two atoms in a binary compound based on position in the periodic table and the electronegativity of the elements.

Vocabulary					
 periodic law 	 alkali metal 	 transition metals 	• ion		
• metal	 alkaline earth 	 inner transition 	cation		
• nonmetal	metal	metals	anion		
metalloidionization energy	halogens	 atomic radius 	representative		
electronegativity	noble gases		elements		

Extra Time: Periodic <u>Table</u> of Aliens

https://phet.colorado.edu/sims/html/build-an-atom/latest/build-an-atom_en.html

Collab connection: True Colors 168-169

 $FRQs: \underline{http://bhs.bellvilleisd.org/UserFiles/Servers/Server_1204/File/Schumann/Atomic\%20Theory\%20\&\%20Periodicity\%20FR\%20worksheet.pdf$

Answers:

http://www.docstover.org/uploads/3/7/2/3/37233997/answers to frq practice on atomic theory.docx

Calendar

Monday	Tuesday	Wednesday	Thursday	Friday
19 Flip it: Video	20			
Color Me Periodic				
PP: Families of the				
Periodic Table				
26 Pop Quiz:	27	28	29	30
Periodic Table	Activity: Modeling	TCT: Periodic	ACT Day	Review
	<u>Trends</u>	Trends		<u>Test</u>
Periodicity Notes				
<u>PP</u>		Rubric		<u>Abbreviated Test</u>
Notes				
HW: <u>Table and</u> <u>Trends Quiz on GC</u>				

Periodic Table and Trends folder

Additional Assignments					
Activities/Worksheets Notes Labs Quizzes/Tests					
Personal Practice: <u>Kahoot Jumble: Periodic</u> <u>Table and Trends</u>	Periodic Trends Videos 123	Activity: Graphing Trends	Quiz: Periodic <u>Trends</u> OR Quiz from <u>NMSI</u>		

Unit Seven: Nomenclature

3 Weeks

Naming and Writing Chemical Formulas					
DCIs	SEPs	CCCs	College Board		
HS.PS.1.2	Developing and Using	Structure and Functions	none		
HS.PS.1.3	Models, Constructing				
HS.PS.1.4	Explanations and				
	Designing Solutions				
Textbook Sections					
Zun	ıdahl	Prentic	ce Hall		
2.8		9.1-9.5			

Learning Targets: By the end of the unit, a student in this course should be able to...

- 1. I can understand that the drive for atoms to form bonds is based on the stability of the noble gases and the octet rule.
- 2. I can describe the formation of an ionic bond.
- 3. I can describe the formation of an anion or cation from its neutral atom.
- 4. I can determine the correct ratio of cations to anions needed to form a neutral ionic compound.
- 5. I can explain the difference between a monatomic and polyatomic ion.
- 6. I can develop a flowchart that can be used to name and write chemical formulas.
- 7. I can state and apply the octet rule.
- 8. I can distinguish between ionic compounds and binary molecular compounds.
- 9. I can name and write formulas for ionic compounds using IUPAC nomenclature (naming) rules.
- 10. I can name and write formulas for binary molecular compounds.

10. I can name and write formatas for ontary inforcation compositios.					
Vocabulary					
valence electronelectron dot	ionic compoundsionic bonds	monatomic ionpolyatomic ion	• list of polyatomic ions		
structure	chemical formula	poryatonne ion	10110		
• octet rule	 formula unit 				

Monday	Tuesday	Wednesday	Thursday	Friday
Background: How	Ionic Naming:	Ionic Naming:	Ionic Naming:	<u>Ionic Nomenclature</u>
do ions form?	Simple Binary	Practice Binary	Transition Binary	<u>Practice</u>
	<u>Homework</u>	Naming	<u>Homework</u>	
<u>Notes</u>	Polyatomic Atoms			Must earn at least
	Homework	Quizizz		25 points on the
Homework: Explain				mix.
the ion formations	<u>Optional</u>			
for Elements #1-18	Homework			
(No noble gases)				
Quiz: Ionic Naming	DHMO Article	Mixed		
Quiz	and worksheet	Nomenclature		
Locked Copy (it's		<u>Practice</u>		
mine for in class				
use)		Must earn at least		
		25 points on the		
		mix of Covalent		
		and ionic.		

Analysis of Anions and Cations pg 200

Nomenclature **folder**

Additional Assignments					
Activities/Worksheets	Notes	Labs	Quizzes/Tests		
binary ionic compounds practice BW: Name/Write binary ionic (post to Google Classroom) Binary Bingo HW: Transition Metal Kahoot: Binary with Transitions HW: Polyatomics Color Hop Mixed Ionic Naming Chemical Formula TicTacToe Mixed Naming Egg Hunt Station Rotation: Naming Nomenclature Packet Interactive Practice Ionic Compounds	Binary video practice Flip on Trans Copy Ion Sheet on PT:Pg R54 Enrichment: Covalent Bonding		Quiz: Background to ions (Retest) KEY Quiz: Binary Retest Quiz: Mixed Naming		

Unit Eight: Chemical Reactions

Writing and Balancing Chemical Equations					
DCIs	SEPs	CCCs	College Board		
HS.PS.1.7.1.a,	Constructing	Patterns	1.4, 1.17, 1.18, 3.1, 3.5,		
HS.PS.1.7.1.b,	Explanations and	Systems and System	3.6, 3.10		
HS.PS.1.7.1.c,	Designing Solutions,	Models			
HS.PS.1.2.1, HS.PS.1.2.2	Using Mathematics and				
	Computational Thinking				
	Textbook Sections				
Zumdahl Prentice Hall			ce Hall		
3.8, 3.9, 4.4, 4.5, 4.6, 11.1-11.3					

Learning Targets: By the end of the unit, a student in this course should be able to...

- 1. I can identify reactants and products in a chemical reaction.
- 2. I can write a balanced equation when given the names or formulas of all reactants and products in a chemical reaction.
- 3. I can classify a reaction as synthesis, decomposition, combustion, single replacement or double replacement.
- 4. I can use the appropriate symbol to indicate a reactant or product as a solid, liquid, gas, or aqueous.
- 5. I can predict the products of single and double replacement reactions types using appropriate references, such as the activity series or solubility rules.
- 6. I can prove that conservation of mass occurs during a chemical reaction.
- 7. I can understand that coefficients in a chemical reaction describe the quantities of individual particles (atoms, molecules, and formula units) and moles of the substances involved.
- 8. I can write a net ionic equation.

- 1. LO 1.17 The student is able to express the law of conservation of mass quantitatively and qualitatively using symbolic representations and particulate drawings.
- 2. LO 1.18 The student is able to apply conservation of atoms to the rearrangement of atoms in various processes.
- 3. LO 3.1 Students can translate among macroscopic observations of change, chemical equations, and particle views.
- 4. (3.5) The student is able to design a plan in order to collect data on the synthesis or decomposition of a compound to confirm the conservation of matter and the law of definite proportions.
- 5. (3.6) The student is able to use data from synthesis or decomposition of a compound to confirm the conservation of matter and the law of definite proportions.
- 6. LO 3.10 The student is able to evaluate the classification of a process as a physical change, chemical change, or ambiguous change based on both macroscopic observations and the distinction between rearrangement of covalent interactions and noncovalent interactions.

Vocabulary					
 chemical equation skeleton equation catalyst coefficient net ionic equation 	 balanced equation combination reaction decomposition reaction 	 single replacement reaction double replacement reaction 	 combustion reaction activity series complete ionic equation spectator ion 		

_	T-			
			(Jan 3) Balancing	Review HW from
			Equations	previous day
				-Cover diatomic
			EdPuzzles 1 2 3	atoms
			<u>PP</u>	-Identify (g), (l), (s),
			<u>Notes</u>	and (aq)
			HW <u>4</u> <u>Ans</u>	HW Ans (same as
			Balance each	day 2)
			equation, then write	
			the reaction	
			sentence for each	
			equation.	
Balancing	<u>Independent</u>	Balancing	Reaction Types	<u>Double</u>
Equations: PhET	<u>Practice</u>	Equations Quiz <u>1</u>		Replacement Lab
		KEY 2 KEY KEY	<u>PP</u>	
			Notes	
		Quiz (GradeCam	<u>HW</u>	
		Comp)		
Racing Reactions	Racing Reactions	Single	(work day)	Quiz: Reaction
		Replacements <u>Lab</u>		Types and
				Predicting
				Reactions
No School	Individual Review	TCT: Chemical	Unit Eight Exam:	
		Reactions	Chemical Reactions	
			Notebook Check	

Additional Assignments Chemical Reactions Folder					
Activities/Worksheets	Notes	Labs	Quizzes/Tests		
Exit Ticket 1 2 3 4 Practice 1 2 3 Predicting Practice Reaction Type Practice Task Cards Trashketball Practice 6 Ans 7 Ans Unit Review Handout HW Net Ionic Equations Breakout (partners) Remediation	Combustion Reactions Video Notes (Video was taken down) Bozeman Review Flipped Intro Flipped Intro: Net Ionic Notes	Modeling Reactions M&M Balancing Synthesis: CaOH → CaCO ₃			

Unit Nine: The Mole

Timeline: 2 weeks

Math for Chemistry					
DCIs	SEPs	CCCs	College Board		
HS.PS.1.7.1.a,	Using Mathematics and	Energy and Matter	1.1, 1.2, 1.3, 1.4, 1.14, 3.6		
HS.PS.1.7.2.a,	Computational Thinking				
HS.PS.1.7.2.b					
Textbook Sections					
Zumdahl Prentice Hall			tice Hall		
3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7					

Learning Targets: By the end of the unit, a student in this course should be able to...

- 1. I can calculate the number of atoms, molecules, ions, formula units, etc. in a sample of material using the mole concept.
- 2. I can define Avogadro's number as one mole equals 6.02 x 1023 particles (atoms, formula units, ions, or molecules).
- 3. I can define molar mass and use the periodic table to obtain or calculate the molar mass for any given substance.
- 4. I can complete molar conversions from moles, grams, liters, and atoms.
- 5. I can apply standard temperature and pressure to molar situations.
- 6. I can create a flowchart to understand the conversions possible using moles
- 7. I can calculate and compare the percent by mass of elements, the empirical formula, and the molecule formula for a compound.

- 1. LO 1.1 The student can justify the observation that the ratio of the masses of the constituent elements in any pure sample of that compound is always identical on the basis of the atomic molecular theory.
- 2. LO 1.2 The student is able to select and apply mathematical routines to mass data to identify or infer the composition of pure substances and/or mixtures.
- 3. LO 1.3 The student is able to select and apply mathematical relationships to mass data in order to justify a claim regarding the identity and/or estimated purity of a substance.
- 4. LO 1.4 The student is able to connect the number of particles, moles, mass, and volume of substances to one another, both qualitatively and quantitatively.
- 5. LO 1.14 The student is able to use data from mass spectrometry to identify the elements and the masses of individual atoms of a specific element.
- 6. LO 3.6 The student is able to use data from synthesis or decomposition of a compound to confirm the conservation of matter and the law of definite proportions.

Vocabulary				
moleAvogadro's number	avogadro's hypothesisSTP	percent compositionmolar volume	representative particleempirical formulamolar mass	

Monday	Tuesday	Wednesday	Thursday	Friday
				<u>Introduction</u> :
				Dimensional
				Analysis Brownies
Dimensional	(Jan 25) Mole	Molar Mass	Expansion of gases	Quiz: Molar
Analysis Brownies	Concept	conversions	(molar gas	Conversions
	<u>Video</u> : How big is a	MM	conversions)	
	mole?			
	AN Conversions			
Remediation:	Day 2	Day 3	Requiz: Follow Up	
Take Two Ticket			<u>Quiz</u>	
AN				
VG				
MM				
Mixed				
Molar Con Card				
Enrichment: Fill my				
room with Packing				
Peanuts				

Additional Assignments The Mole folder					
Activities/Worksheets	Notes	Labs	Quizzes/Tests		
mixed practice Kahoot Review			Quiz Ver. 3		

Unit Ten: Stoichiometry

Base Phenomenon: How do companies predict chemical yield?

Stoichiometry					
DCIs	SEPs	CCCs	College Board		
HS.PS.1.7.1.a,	Using Mathematics and	Energy and Matter	1.19, 3.3, 3.4		
HS.PS.1.7.2.a,	Computational Thinking				
HS.PS.1.7.2.b					
	Textbook Sections				
Zumdahl Prentice Hall			ntice Hall		
3.10, 3.11		12.1-12.3			

Learning Targets: Essentials are highlighted

- 1. I can use a balanced chemical reaction to determine quantities before, during, and after a chemical reactions.
- 2. I can use molar quantities and molar ratios for chemical calculations.
- 3. I can perform stoichiometric calculations to determine mass and/or mole relationships between reactants and products and calculations for limiting reactants and percent yield.

- 1. LO 1.19 The student can design, and/or interpret data from, an experiment that uses gravimetric analysis to determine the concentration of an analyte in a solution.
- 2. LO 3.3 The student is able to use stoichiometric calculations to predict the results of performing a reaction in the laboratory and/or to analyze deviations from the expected results.
- 3. LO 3.4 The student is able to relate quantities (measured mass of substances, volumes of solutions, or volumes and pressures of gases) to identify stoichiometric relationships for a reaction, including situations involving limiting reactants and situations in which the reaction has not gone to completion.

	Vocal	oulary	•
 limiting reagent 	 stoichiometry 	 actual yield 	 theoretical yield
 excess reagent 	 mole ratio 	percent yield	

Pages reference Prentice Hall

Monday	Tuesday	Wednesday	Thursday	Friday
(Feb 5) 12.1 The	<u>Dimensional</u>	12.2 Chemical	Analysis of Baking	Stoic Practice 1
Arithmetic of	Analysis Brownies	Calculations	Soda (pg 367)	Option 2 Key
Equations				<u>3</u>
<u>PP</u>		<u>PP</u>		<u>4</u>
Notes		<u>Notes</u>		
<u>HW</u>		<u>HW</u>		
Stoic Practice	Quiz: 12.1-12.2	Remediation	Quiz: V2	12.3 Limiting
Option <u>5</u>				Reagent and
Option 6				Percent Yield
				<u>PP</u>
				Notes
Limiting Reagent	<u>Practice</u>	Limiting Reagent	Work Day	Quiz: Limiting
Practice		<u>Lab (pg 372)</u>	,	Reagents KEY
Answers				

Stoic Folder

Additional Assignments						
Activities/Worksheets Notes Labs Quizzes/Tests						
		Synthesis Lab: Magnesium Oxide				
		Resources <u>1 2 3 4</u>				

SKIPPED Unit Eleven: Reaction Kinetics

Time: 3 Week

Reaction Kinetics					
DCIs	SEPs CCCs College Board				
HS.PS.1.5	Analyzing and	Energy and Matter: 4.1, 4.2, 4.3, 4.4, 4.5, 4			
	interpreting data Flows, Cycles, and		4.7, 4.8, 4.9,		
	Using mathematics and	Conservation			
	computational thinking				
	Textbook	Sections			
Zum	dahl	Prei	ntice Hall		
12.1-12.7 (emphasis 12.2-1	2.7)	18.1-18.5			

Learning Targets: By the end of the unit, a student in this course should be able to...

- 1. Express the rate of a chemical change and identify the four factors that influence the rate of a chemical reaction.
- 2. explain how amounts of reactants and products change in a chemical system at equilibrium, including the impact of the three common chemical stresses.
- 3. use K_{eq} to determine the equilibrium position of a reaction.
- 4. explain the relationship between the solubility product constant and the solubility of a compound.
- 5. predict whether a precipitation will occur when two salt solutions are mixed.
- 6. identify the two characteristics of a spontaneous reaction and the two factors that determine the spontaneity of a reaction.
- 7. explain the role of entropy in a chemical reaction.
- 8. identify the Gibbs free-energy change for a spontaneous process.
- 9. identify the general relationship between the value of the specific rate constant, k, and the speed of the reaction.
- 10. explain the significance of hills and valleys in a reaction progress curve.

- 1. LO 4.1 The student is able to design and/or interpret the results of an experiment regarding the factors (i.e., temperature, concentration, surface area) that may influence the rate of a reaction.
- 2. LO 4.2 The student is able to analyze concentration vs. time data to determine the rate law for a zeroth-, first-, or second-order reaction.
- 3. LO 4.3 The student is able to connect the half-life of a reaction to the rate constant of a first-order reaction and justify the use of this relation in terms of the reaction being a first-order reaction.
- 4. LO 4.4 The student is able to connect the rate law for an elementary reaction to the frequency and success of molecular collisions, including connecting the frequency and success to the order and rate constant, respectively.
- 5. LO 4.5 The student is able to explain the difference between collisions that convert reactants to products and those that do not in terms of energy distributions and molecular orientation.
- 6. LO 4.6 The student is able to use representations of the energy profile for an elementary reaction (from the reactants, through the transition state, to the products) to make qualitative predictions regarding the relative temperature dependence of the reaction rate.
- 7. LO 4.7 The student is able to evaluate alternative explanations, as expressed by reaction mechanisms, to determine which are consistent with data regarding the overall rate of a reaction, and data that can be used to infer the presence of a reaction intermediate.
- 8. LO 4.8 The student can translate among reaction energy profile representations, particulate representations, and symbolic representations (chemical equations) of a chemical reaction occurring in the presence and absence of a catalyst.

9. LO 4.9 The student is able to explain changes in reaction rates arising from the use of acid-base catalysts, surface catalysts, or enzyme catalysts, including selecting appropriate mechanisms with or without the catalyst present.

catalyst present.			
•	Vocab	ulary	·
 rate collision theory activation energy activated complex transition state inhibitor nonspontaneous reaction first-order reaction 	 reversible reaction chemical equilibrium equilibrium position entropy law of disorder elementary reaction 	 Le Chatelier's principle equilibrium constant free energy Gibbs free-energy change reaction mechanism 	 solubility product constant common ion common ion effect spontaneous reaction rate law specific rate law intermediate

Calendar

References are for Prentice Hall

Monday	Tuesday	Wednesday	Thursday	Friday
(Feb 25) Inquiry Activity: Temperature and Reaction Rates (pg 540)	18.1: Rates of Reactions	Does Steel Burn? lab (pg 544)	Reaction Curve gallery walk	18.2 Reversible Reactions and Equilibrium
Practice: Equilibrium Constants	18.3 Solubility Equilibrium	Practice: K _{sp} and common ions	Quiz: 18.1-18.3	18.4 Entropy and Free Energy
Lab: Enthalpy and Entropy (pg 574)	18.5 The Progress of Chemical Reactions	Navigating Multi-step reaction curves practice	Review	Exam

Additional Assignments					
Activities/Worksheets Notes Labs Quizzes/Tests					

Unit Twelve: Solutions

Time: 2 weeks

Solutions						
DCIs	SEPs	CCCs	College Board			
HS.PS.1.5, HS.PS.1.4,	Developing and Using	Patterns	1.4, 1.11, 2.1, 2.3, 2.8,			
HS.PS.1.1, HS.PS.1.2,	Models, Constructing	Reaction Rates	2.9, 2.11, 2.14, 2.15, 5.9,			
HS.PS.1.3, HS.PS.1.6	Explanations and	Structure and Functions	5.10, 5.11			
	Designing Solutions					
	Textbook Sections					
Zumdahl		Prent	ice Hall			
4.1, 4.2, 4.3, 10.1, 10.2, 11.1-11.8		13.2, 15.1-15.3, 16.1-16.4				

Learning Targets: By the end of the unit, a student in this course should be able to...

- 1. (13.2.1, 13.2.2, 13.2.3, 13.2.4) I can describe and explain the nature of liquids.
- 2. (15.2.1-4) I can explain phenomenon based on homogeneous aqueous solutions.
- 3. (15.3.1-2) I can develop a method to distinguish between suspensions, colloids, substances, ionic solutions, and covalent solutions.
- 4. (16.1.1-3) I can describe the properties of a solution and how to make a solution with efficiency based on graphical data and best lab practices.
- 5. (16.2.1-2) I can describe a solution based on its molarity and I can use this molarity to form diluted or concentrated solutions, in theory and in practice.
- 6. (16.3.1-2) I can describe the colligative properties of a solution and make qualitative predictions of boiling points, freezing points, and given solutions of given solutions.

- 1. LO 1.4 The student is able to connect the number of particles, moles, mass, and volume of substances to one another, both qualitatively and quantitatively.
- 2. LO 1.11 The student can analyze data, based on periodicity and the properties of binary compounds, to identify patterns and generate hypotheses related to the molecular design of compounds for which data are not supplied.
- 3. LO 2.1 Students can predict properties of substances based on their chemical formulas, and provide explanations of their properties based on particle views.
- 4. LO 2.3 The student is able to use aspects of particulate models (i.e., particle spacing, motion, and forces of attraction) to reason about observed differences between solid and liquid phases and among solid and liquid materials.
- 5. LO 2.8 The student can draw and/or interpret representations of solutions that show the interactions between the solute and solvent.
- 6. LO 2.9 The student is able to create or interpret representations that link the concept of molarity with particle views of solutions.
- 7. LO 2.11 The student is able to explain the trends in properties and/or predict properties of samples consisting of particles with no permanent dipole on the basis of London dispersion forces.
- 8. LO 2.14 The student is able to apply Coulomb's Law qualitatively (including using representations) to describe the interactions of ions, and the attractions between ions and solvents to explain the factors that contribute to the solubility of ionic compounds.
- 9. LO 2.15 The student is able to explain observations regarding the solubility of ionic solids and molecules in water and other solvents on the basis of particle views that include intermolecular interactions and entropic effects.
- 10. LO 5.9 The student is able to make claims and/or predictions regarding relative magnitudes of the forces acting within collections of interacting molecules based on the distribution of electrons within the

- molecules and the types of intermolecular forces through which the molecules interact.
- 11. LO 5.10 The student can support the claim about whether a process is a chemical or physical change (or may be classified as both) based on whether the process involves changes in intramolecular versus intermolecular interactions.
- 12. LO 5.11 The student is able to identify the noncovalent interactions within and between large molecules, and/or connect the shape and function of the large molecule to the presence and magnitude of these interactions.

Vocabulary						
 vaporization evaporation vapor pressure boiling point normal boiling point unsaturated solution concentration freezing-point depression 	 aqueous solution solvent solute solvation electrolyte miscible immiscible dilute solution boiling point elevation 	 nonelectrolyte strong electrolyte weak electrolyte hydrate suspension supersaturated solution concentrated solution 	 colloid Tyndall effect Brownian motion emulsion saturated solution solubility Henry's Law molarity (M) colligative property 			

Activity idea: Antacid properties <u>link</u>

https://drive.google.com/drive/folders/0B6ZrbqR7SC74ZExnalgyeTBncmM

Copper (II) Sulfate hydrate <u>lab</u>

The neture of	Uomogonoous	Electrolyte? Lab	Untaraganaous
	•	_	<u>Heterogeneous</u>
* · · · · · · · · · · · · · · · · · · ·	*	Pg 199	Aqueous Solutions
			(15.3)
Homework (Both	<u>Properties of Ionic</u>		
are the same)	Solutions (196-198)		<u>Handout</u>
- <u>GF</u>	<u>Handout</u>		<u>Homework</u>
- Worksheet	<u>Homework</u>		
Properties of	TCT: Salt Bath	Calculating	Calculating
Solutions (16.1)	Grading Rubric	Concentrations and	Concentrations
Handout	(<u>Teacher</u>)	dilutions (16.2)	Gallery Walk w/ET
<u>Homework</u>	KDE Annotations	*No %volume or	
	Rubric	%mass	
Take Home <u>Demo</u>	KDE Samples	Handout	
Colligativo	Ouiz: 16.1.16.2		KEY: Solutions
			KEI. SOIUIOIIS
*		<u>Trasnketball</u>	N. 1. C. 1
	Article		Modified
		Review Worksheet	
<u>Homework</u>			
<u>Articles</u>		Review <u>Stations</u>	
Optional <u>Demo</u> : Ice			
cream in a bag			
	- GF - Worksheet Properties of Solutions (16.1) Handout Homework Take Home Demo Colligative Properties of Solutions (16.3) Handout Homework Articles Optional Demo: Ice	liquids (13.2) Handout Homework (Both are the same) - GF - Worksheet Properties of Solutions (16.1) Handout Homework Homework Homework Take Home Demo Colligative Properties of Solutions (16.3) Handout Homework Colligative Properties of Solutions (16.3) Handout Homework Articles Optional Demo: Ice	liquids (13.2)aqueous solutions (15.2) andPg 199HandoutProperties of Ionic Solutions (196-198)Properties of Ionic Solutions (196-198)- GF - WorksheetHandout HomeworkCalculating Concentrations and dilutions (16.1)Properties of Solutions (16.1)Grading Rubric Grading Rubric (Teacher)Concentrations and dilutions (16.2)HomeworkKDE Annotations Rubric*No %volume or %massTake Home DemoKDE SamplesHandout HomeworkColligative Properties of Solutions (16.3)Quiz: 16.1-16.3 KEY ArticleReview TrashketballConcentrations and dilutions (16.2)ReviewRubric *No %volume or *mass*No %volume or *massHandout HomeworkHandout ReviewReviewHandout Homework ArticlesReview WorksheetOptional Demo: IceReview Stations

Solutions <u>folder</u>

Unit Thirteen: Acid/Base

Time: 2.5 weeks

Acids and Bases						
DCIs	SEPs	CCCs	College Board			
HS.PS.1.5, HS.PS.1.4,	Developing and Using	Patterns	2.2, 6.1, 6.11, 6.14, 6.15,			
HS.PS.1.1, HS.PS.1.2,	Models, Constructing	Reaction Rates	6.16, 6.17, 6.18, 6.19,			
HS.PS.1.3	Explanations and	Structure and Functions	6.20,			
	Designing Solutions					
	Textbook Sections					
Zumdahl		Prent	ice Hall			
4.8, 14.1-14.3, 14.6-14.8, 14.11, 15.1, 15.2, 15.5		19.1-19.5				

Learning Targets: By the end of the unit, a student in this course should be able to...

- 1. (19.1.1-3) I can apply the Arrhenius, Bronsted-Lowry, and Lewis theories to acids and bases.
- 2. (19.2.1-3) I can apply my knowledge of H+ and OH- concentrations to determine if a substance is neutral, acidic, or basic, and select an appropriate indicator for the substance.
- 3. (19.4.1-2) I can describe the neutralization of an acid and a base based on its titration.
- 4. (19.5.1-2) I can describe salt hydrolysis and buffer systems.

College Board

- 1. LO 2.2 The student is able to explain the relative strengths of acids and bases based on molecular structure, interparticle forces, and solution equilibrium.
- 2. LO 6.1 The student is able to, given a set of experimental observations regarding physical, chemical, biological, or environmental processes that are reversible, construct an explanation that connects the observations to the reversibility of the underlying chemical reactions or processes
- 3. LO 6.11 The student can generate or use a particulate representation of an acid (strong or weak or polyprotic) and a strong base to explain the species that will have large versus small concentrations at equilibrium.
- 4. LO 6.14 The student can, based on the dependence of Kw on temperature, reason that neutrality requires [H+] = [OH-] as opposed to requiring pH = 7, including especially the applications to biological systems.
- 5. LO 6.15 The student can identify a given solution as containing a mixture of strong acids and/or bases and calculate or estimate the pH (and concentrations of all chemical species) in the resulting solution.
- 6. LO 6.16 The student can identify a given solution as being the solution of a monoprotic weak acid or base (including salts in which one ion is a weak acid or base), calculate the pH and concentration of all species in the solution, and/or infer the relative strengths of the weak acids or bases from given equilibrium concentrations.
- 7. LO 6.17 The student can, given an arbitrary mixture of weak and strong acids and bases (including polyprotic systems), determine which species will react strongly with one another (i.e., with K >1) and what species will be present in large concentrations at equilibrium.
- 8. LO 6.18 The student can design a buffer solution with a target pH and buffer capacity by selecting an appropriate conjugate acid-base pair and estimating the concentrations needed to achieve the desired capacity.
- 9. LO 6.19 The student can relate the predominant form of a chemical species involving a labile proton (i.e., protonated/deprotonated form of a weak acid) to the pH of a solution and the pKa associated with the labile proton.
- 10. LO 6.20 The student can identify a solution as being a buffer solution and explain the buffer mechanism in terms of the reactions that would occur on addition of acid or base.

Vocabulary

 acidic basic acidic solution basic solution hydroxide hydronium Arrhenius base 	 Bronsted-Lowry acid Bronsted-Lowry base conjugate acid conjugate base Arrhenius acid 	 amphoteric monoprotic diprotic acid triprotic acid titration neutralization neutral 	 acid base pairs Universal indicator solution. strong base strong acid weak base weak acid
--	--	---	--

Monday	Tuesday	Wednesday	Thursday	Friday
Acid-Base Theory	<u>Indicators from</u>	Acid Base PhET	Neutralization	Acid/Base Quiz
(19.1) and pH	Natural Sources		(19.4) and Salts	<u>KEY</u>
(19.2)			(19.5)	
<u>PP</u>	pH Lab		<u>PP</u>	
<u>Notes</u>			<u>Notes</u>	
<u>HW</u>			<u>HW</u>	
Virtual Titration	<u>Virtual Titration</u>	Acid Base Vocab	Gallery Walk Key	Test: Acids KEY
		Bingo		<u>Article</u>

Acid Base folder

Additional Assignments						
Activities/Worksheets Notes Labs Quizzes/Test						
Naming Acids Naming Acids Worksheet Acids and Bases Strong vs. Weak Calculating pH		Natural Indicators Open Inquiry	Test Bank			

SKIPPED Unit Fourteen: Gases

Time: 3 Week

Gases						
DCIs	SEPs	SEPs CCCs College Board				
ETS1.1, ETS1.2, ETS1.3,	Using mathematics and	Cause and effect: 1.3, 2.4, 2.5, 2.6, 3.4,				
ETS1.4	computational thinking	al thinking Mechanism and				
	Developing and using	explanation				
	models					
	Textbook Sections					
Zumdahl Prentice Hall			tice Hall			
5.1-5.7		13.1, 14.1-14.4				

Learning Targets: By the end of the unit, a student in this course should be able to...

- 1. identify the three assumptions of the kinetic theory as it applies to gases.
- 2. explain how KMT explains gas pressure.
- 3. explain the relationship between temperature and kinetic energy of the gas molecules.
- 4. explain why gases are easier than solids or liquids to compress.
- 5. identify the factors impacting gas pressure.
- 6. identify, explain, and apply Boyle's law, Charles' law, Gay-Lussac's law, and the combined gas law.
- 7. identify, explain, and apply the ideal gas law.
- 8. explain the limitations of the ideal gas law.
- 9. determine the partial pressure of gases in a mixture.
- 10. explain how molecular mass of a gas impacts effusion and diffusion.

- 1. LO 1.3 The student is able to select and apply mathematical relationships to mass data in order to justify a claim regarding the identity and/or estimated purity of a substance.
- 2. LO 2.4 The student is able to use KMT and concepts of intermolecular forces to make predictions about the macroscopic properties of gases, including both ideal and nonideal behaviors.
- 3. LO 2.5 The student is able to refine multiple representations of a sample of matter in the gas phase to accurately represent the effect of changes in macroscopic properties on the sample.
- 4. LO 2.6 The student can apply mathematical relationships or estimation to determine macroscopic variables for ideal gases.
- 5. LO 3.4 The student is able to relate quantities (measured mass of substances, volumes of solutions, or volumes and pressures of gases) to identify stoichiometric relationships for a reaction, including situations involving limiting reactants and situations in which the reaction has not gone to completion.
- 6. LO 5.2 The student is able to relate temperature to the motions of particles, either via particulate representations, such as drawings of particles with arrows indicating velocities, and/or via representations of average kinetic energy and distribution of kinetic energies of the particles, such as plots of the Maxwell-Boltzmann distribution.

Vocabulary					
 kinetic energy 	barometer	 compressibility 	 ideal gas constant 		
• kinetic molecular	pascal (Pa)	Boyle's Law	 partial pressure 		
theory (KMT)	standard	Charles' Law	• Dalton's law of		
• gas pressure	atmosphere (atm)	• Gay-Lussac's Law	partial pressures • diffusion		
vacuumatmospheric	• Graham's law of	 Combined gas law 	• effusion		
pressure	effusion	• ideal gas law	Cirusion		

Monday	Tuesday	Wednesday	Thursday	Friday
Inquiry Activity: Observing Gas Pressure (pg 384)	13.1 Nature of Gases	14.1 Properties of Gases	14.2 Gas Laws	Ideal Gas Law Simulation (justify the laws graphically)
Ideal Gas Law Simulation (justify the laws graphically)	Gas Law Practice	14.3 Ideal Gas Law	Carbon Dioxide from Antacid Tablet (pg 428)	Ideal Gas Law practice
The Science of Diving (430-431)	14.4 Gas Mixtures	Lab: Diffusion (pg 437)	Review	Test

Gases Folder

Additional Assignments					
Activities/Worksheets Notes Labs Quizzes/Tests					

Unit Fifteen: Thermochemistry

Thermochemistry					
DCIs	SEPs	CCCs	College Board		
HS.PS.3.3, HS.PS.3.1,	Constructing	System and System	2.13, 3.11, 5.3, 5.4, 5.5,		
HS.PS.1.4.1.a.i,	Explanations and	Models	5.6		
HS.PS.3.4	Designing Solutions, Energy and Matter				
	Using Mathematics and				
	Computational Thinking,				
	Developing and Using				
	Models				
Textbook Sections					
Zumdahl Prentice Hall			ce Hall		
6.1-6.5		17.1-17.4			

Learning Targets: By the end of the unit, a student in this course should be able to...

- 1. I can identify a reaction as endothermic or exothermic depending upon the location of the energy term in the chemical equation.
- 2. I can understand that "burns in air" means that the substance reacts with oxygen.
- 3. I can identify a reaction as exothermic or endothermic using a potential energy diagram (page 527 in Glencoe book).
- 4. I can identify a reaction as exothermic or endothermic when given a value of change in enthalpy (delta H).
- 5. I can understand that all chemical reactions either produce energy (exothermic) or absorb energy (endothermic) as a result of the breaking and making of chemical bonds.
- 6. I can use the equation q = mc(Tf-Ti) to calculate the heat, mass, specific heat, or change in temperature of a substance when given the other three variables.
- 7. I can determine if the reaction is endothermic or exothermic based on the sign (+/-) of "q".
- 8. I can explain how a calorimeter is used to measure the specific heat of a metal.
- 9. I can predict if the energy is flowing from system to surroundings (exothermic) or surroundings to system (endothermic).
- 10. I can explain the difference between heat and temperature.

College Board

- 1. LO 2.13 The student is able to describe the relationships between the structural features of polar molecules and the forces of attraction between the particles.
- 2. LO 3.11 The student is able to interpret observations regarding macroscopic energy changes associated with a reaction or process to generate a relevant symbolic and/or graphical representation of the energy changes.
- 3. LO 5.3 The student can generate explanations or make predictions about the transfer of thermal energy between systems based on this transfer being due to a kinetic energy transfer between systems arising from molecular collisions.
- 4. LO 5.4 The student is able to use conservation of energy to relate the magnitudes of the energy changes occurring in two or more interacting systems, including identification of the systems, the type (heat versus work), or the direction of energy flow.
- 5. LO 5.5 The student is able to use conservation of energy to relate the magnitudes of the energy changes when two nonreacting substances are mixed or brought into contact with one another.
- 6. LO 5.6 The student is able to use calculations or estimations to relate energy changes associated with heating/cooling a substance to the heat capacity, relate energy changes associated with a phase transition to the enthalpy of fusion/vaporization, relate energy changes associated with a chemical reaction to the enthalpy of the reaction, and relate energy changes to $P\Delta V$ work.

Vocabulary

calorimetry	 heat of reaction 	 molar heat of 	• heat
calorimeter	• law of	vaporization	heat capacity
 chemical potential 	conservation of	specific heat	heat of
energyendothermic	energy	surrounding	combustion molar heat of
process	 molar heat of 	system	solidification
• enthalpy	condensation	 thermochemical 	molar heat of
• exothermic	 molar heat of 	equation	solution
process	fusion	thermochemistry	SOIUTION

Endo/Exo Lab: Students will be given five white salts. They will measure the temperature changes for each salt and calculate the heat given or absorbed off by each salt. Then, the student will identify an unknown salt.

Calendar

Monday	Tuesday	Wednesday	Thursday	Friday
9 Flow of Energy	10 <u>BW</u>	11 Thermo Stations	12 <u>Task Cards</u>	13 Thermo
<u>PP</u>	Thermo Lab			Exo/Endo Quiz
<u>Notes</u>		Shortened Stations	OR Worksheet	
In class practice		(same questions)	(Same questions)	
<u>HW</u>				
16 Calorimetry	17 Enthalpy	18 <u>BW</u>	19 Finish the	20 Enthalpy Quiz
	Worksheet	The Energy of Food	energy lab	<u>KEY</u>
<u>PP</u>		<u>Lab</u>		
<u>Notes</u>	Or <u>Stations</u>		(Limited Internet)	(Limited Internet)
	(Limited Internet)			
Thermo Sim				

$Thermo\ \underline{folder}$

Additional Assignments					
Activities/Worksheets Notes Labs Quizzes/Tests					

Unit Sixteen: Nuclear Chemistry

Nuclear Reactions				
DCIs	SEPs	CCCs	College Board	
HS.PS.1.8	Developing and Using	Patterns	4.3	
	Models Scale, Proportion, and			
		Quantity		
		Cause and Effect		
Textbook Sections				
Zumdahl Prentice Hall			ce Hall	
19.1-19.7		25.1-25.4		
19.1-19.7		25.1-25.4		

Learning Targets: By the end of the unit, a student in this course should be able to...

- 1. I can recognize isotopes of an element given number of subatomic particles, mass number, or shorthand notation.
- 2. I can calculate the atomic mass number given percent abundance of naturally occurring isotopes.
- 3. I can describe the radioactive decay process.
- 4. I can compare and contrast alpha, beta, and gamma radiation.
- 5. I can compare and contrast fission and fusion reactions.
- 6. I can write balanced alpha, beta, positron, and electron capture decay reactions.
- 7. I can calculate half-life problems using an equation and logical thinking.

College Board

1. LO 4.3 The student is able to connect the half-life of a reaction to the rate constant of a first-order reaction and justify the use of this relation in terms of the reaction being a first-order reaction.

	Vocabulary					
alpha particlebeta particlefissionfusion	gamma rayhalf-lifeneutron absorption	positronneutronmoderation	radiationradioactivityradioisotopes			

Monday	Tuesday	Wednesday	Thursday	Friday
Types of Nuclear	Half-Life: It's	Nuclear Fission and	Pros: Nuclear	
Radiation	About Flippin'	Fusion	Power	<u>Test</u>
DD	Time! <u>Lab</u>	<u>Chapter Tour</u>		
<u>PP</u>		OR	Make A Websquest	
Notes		<u>PP</u>	(PreAP)	
HW		<u>Notes</u>		
11 11				
<u>Practice</u>				

Nuclear <u>folder</u>

Additional Assignments			
Activities/Worksheets	Notes	Labs	Quizzes/Tests
			Fission/Fusion Quiz <u>KEY</u>

End of Year Review and Final Exam with Topics

Print Review

Digital Review

Mock Final Exam Annotated Key

Final Exam

Standards Check-In

Final Review: (Standards are aligned for standard chem, but it's the same content typically.)

- Math for Chemistry
- Acid/Base and Solutions
- Chemical Reactions
- Nuclear Reactions

Chemistry Articles on NewsELA

Unit	Topic	Articles		
One	Review: Parts of the Atom and Safety	Science writer,		
	Periodic Table and Trends	Periodic Table History, History of Chemistry,		
	Properties of Matter	Mars: The Red Planet, Senses,		
Two	Formulas and Naming	forensic chemist,		
	Balancing Equations	Reaction Type: Oxidation,		
Three -	Math for Chemistry: Sig Figs, Density, % Error	Space Mining,		
	Unit and Mole Conversions	Calculating GPA, "limiting" the common cold		
Midterm				
Four -	Reactions in Solution (including Acid/Base)	Properties of water, water cycle,		
	Covalent Structures	What is carbon?, crystals: snowflake,		
Five -	Nuclear Reactions	Marie Curie, radiation,		
	Thermochemistry	thermometers, thermal systems engineer, the sun		
Six	Light and Waves	Bioluminescence, electricity experiments,		
	Gases	Atmospheric Chemist,		