Complete the problems outlined for each day. Begin with Thursday and work through the week. Download the pdf onto Kami. Upload a screenshot of your work.

Monday	Tuesday	Wednesday	Thursday	Friday
The table shows the locations of five points on the coordinate plane. Removing which point will allow the table to represent a function? $\hline \hline Point & Location \\ \hline E & (4, -11) \\ \hline F & (-4, 9) \\ \hline G & (3, -11) \\ \hline H & (0, -9) \\ \hline I & (4, 9) \\ \hline A. Point F \\ B. Point G \\ C. Point H \\ D & Point L \\ \hline \end{tabular}$	Which equation has infinitely many solutions? A. $6x + 5 = 6x + 7$ B. $6x + 7 = 5x + 7$ C. $3(x + 2) - 1 = 3x + 1$ D. $4(x + 1) - 3 = 4x + 1$	If $-\sqrt{6}$ is plotted on the number line below, which point best represents the correct location of that point? A B CD + + + + + + + + + + + + + + + + + + +	Determine the number of solutions for each equation. 1. $5x = 5x + 3$ 2. $5x + 6 = 6x + 5$ 3. $5x + 6 = 5x + 6$ 4. $2x + 4 = 4x + 2$ 5. $2x + 4 = 2x + 4$ 6. $2x = 2x + 4$	At a home improvement store, customers can rent a small cargo truck to transport any large items they purchase. The store charges \$20 as a rental fee plus \$7.50 per hour to rent the truck. Which equation best represents the situation? A. $y = 7.5x - 20$ B. $y = 7.5x + 20$ C. $y = 20x - 7.5$ D. $y = 20x + 7.5$
Label each equation with the line it represents on the coordinate grid below.	The table represents a linear function. x y a 15 -3 11 0 5 2 b 7 -9 What are the values of <i>a</i> and <i>b</i> ? A. $a = -1$, $b = 5$ B. $a = 5$, $b = -1$ C. $a = 1$, $b = 5$ D. $a = -5$, $b = 1$	What is the solution of the following system of equations? $\begin{cases} 9x - 7y = 22\\ x + 3y = -24 \end{cases}$ A. $x = 4, y = 2$ B. $x = 3, y = -9$ C. $x = 0, y = -8$ D. $x = -3, y = -7$	Write the equation that represents the function graphed.	Which equation has at least one solution? Circle all that apply. A. $2x - 1 = 2$ B. $3(y + 1) = 3y$ C. $5p - (3 + p) = 6p + 1$ D. $\frac{4}{5}m = 1 - \frac{1}{5}m$ E. $10 + 0.5w = \frac{1}{2}w - 10$ F. $4a + 3(a - 2) = 8a - (6 + a)$

Monday	Tuesday	Wednesday	Thursday	Friday
Triangle ABC is a right triangle. The length of one leg is 117 inches, and the length of the hypotenuse is 125 inches. What is the length of the other leg? A. 8 inches B. 44 inches	Write each equation below in slope intercept form. (y = mx + b) 1. $2y = -5x + 6$ 2. $-y = 7x - 2$ 3. $3x + 2y = 12$	A number line is shown below. Place each of the following numbers at is approximate location on the number line. A. $\sqrt{5}$ B. $\sqrt{16}$ C. $\sqrt{36}$ D. $\sqrt{63}$	Find the slope of the line that passes through the points (7, –2) and (7, 13). (**making a x, y table may be helpful)	Which statement must be true? Which statement must be true? x p $rzA. Area of square Z = areaof square X + area of$
C. 121 inches D. 171 inches	5. 5X + 2y - 12	1 2 3 4 5 6 7 8 9 10 7		 b) square X + area of square Y B. Area of square X = area of square Y + area of square Z C. Perimeter of square Z = perimeter of square X +Perimeter of square Y D. Perimeter of square X = perimeter of square Y +perimeter of square Z
What is the y-intercept of the line y = 8x - 3 ? A. 8 B8 C. 3 D3	Use substitution to solve the system. $ \begin{cases} y = -2x + 1 \\ 2x - 2y = 4 \end{cases} $	Determine if the given relation is a function. Input Output 10 20 30 40 45	Write the equation that represents the function graphed.	Find the area of the smallest side of the right triangle. $A = 169 ft^{2}$ $A = 144 ft^{2}$ $A. 25 ft^{2}$ $B. 5 ft^{2}$ $C. 313 ft^{2}$ $D. 13 ft^{2}$

Complete the problems outlined for each day. Download the pdf onto <u>https://web.kamihq.com/and share your completed work with your teacher</u>.