Extra Practice

Chapter 4

Lessons 4-1 and 4-2

Graph each system.

1.
$$y = 3x^2$$

2.
$$y = (x+3)^2 + 1$$

3.
$$y = 2x^2 + 4$$

4.
$$y = (x+1)^2 - 3$$
 5. $y = (x-2)^2$

5.
$$y = (x-2)^2$$

6.
$$v = -2(x-1)^2 + 3$$

Identify the vertex, axis of symmetry, minimum or maximum value, and domain and range of each function.

$$y = 4(x-2)^2$$

8.
$$f(x)=(x+1)^2+2$$

8.
$$f(x)=(x+1)^2+2$$

9. $y=-\frac{1}{2}(x-4)^2-10$

10.
$$f(x) = x^2 - 4x + 5$$

10.
$$f(x) = x^2 - 4x + 5$$
 11. $f(x) = -2x^2 + 4x - 3$ **12.** $y = x^2 + 5x - 14$

12.
$$y = x^2 + 5x - 14$$

- **13.** A ball is dropped from the top of a building. The distance in meters above the ground y of the ball after t seconds can be modeled by the equation $v = -9.8t^2 + 100$.
 - **a.** What is the *y*-intercept of the equation?
 - **b.** Describe the meaning of the *y*-intercept of the graph of the equation.

NameDate	Name	Class	Date
----------	------	-------	------

Extra Practice (continued)

Chapter 4

14. Martin has 120 feet of fencing to enclose two rectangular play

areas for children. He plans to enclose a rectangular area

then divide it into two equal sections, as shown in the figure.

- **a.** Find the dimensions of the largest total area Martin can enclose.
- **b.** Find the area of each of the small play areas.
- **15.** Marnie throws a softball straight up into the air. The ball leaves her hand when it is exactly 5 ft from the ground. The height h of the ball, in feet, can be written as a function of time t, in seconds, as $h = -16t^2 + 40t + 5$.
 - **a.** What is the maximum height the ball reaches?
 - **b.** Marnie catches the ball 5 ft from the ground. How long was the ball in the air?

Lesson 4-3

Find an equation in standard form of the parabola passing through the given points.

17.
$$(-3, -4)$$
, $(0, -4)$, $(1, 0)$ **18.** $(-1, 0)$, $(0, 3)$, $(1, 2)$

22. The table shows the relation between the
speed of a car and its stopping distance.

Speed (mi/h)	35	45	50	60
Stopping Distance (ft)	96	14 0	16 5	221

- **a.** Use a quadratic function to model the data.
- **b.** Predict the stopping distance for a car traveling at 65 mi/h.

Lesson 4-4

Factor each expression.

23.
$$x^2 + 3x - 54$$

24.
$$x^2 + 10x + 24$$

25.
$$x^2 - 36$$

26.
$$x^2 - 9x - 36$$

27.
$$x^2 - 15x + 56$$

28.
$$25x^2 + 70x + 49$$

29. $7x^2 - 20x - 3$

30. $5x^2 + 23x - 10$

31. $\frac{1}{4}x^2 - 4$

32. $x^2 - 6x - 16$

33. $4x^2 + 12x + 40$

34. $4x^2 - 6x + 9$

Prentice Hall Algebra 2 • Extra Practice
Copyright © by Pearson Education, Inc., or its affiliates. All Rights Reserved.
14

Extra Practice (continued)

Chapter 4

Lesson 4-5

Solve each equation by factoring, by taking square roots, or by graphing. When necessary, round your answer to the nearest hundredth.

35.
$$x^2 + 4x - 1 = 0$$

36.
$$4x^2 - 100 = 0$$

37.
$$x^2 = -2x + 1$$

38.
$$x^2 - 9 = 0$$

39.
$$2x^2 + 4x = 70$$

40.
$$x^2 - 30 = 10$$

41.
$$x^2 + 4x = 0$$

42.
$$x^2 + 3x + 2 = 0$$

43.
$$x^2 = 8x = -16$$

- **44**. Hal's sister is 5 years older than Hal. The product of their ages is 456. How old are Hal and his sister?
- **45.** A toy rocket is fired upward from the ground. The relation between its height h, in feet, and the time t from launch, in seconds, can be described by the equation $h = -16t^2 + 64t$. How long does the rocket stay more than 48 feet above the ground?
- **46.** The expression $P(x) = 2500x 2x^2$ describes the profit of a company that customizes bulldozers when it customizes x bulldozers in a month.
 - **a.** How many bulldozers per month must the company customize to make the maximum possible profit? What is the maximum profit?
 - **b.** Describe a reasonable domain and range for the function P(x).
 - **c.** For what number of bulldozers per month is the profit at least \$750,000?
- **47.** Flor is designing a kite with two perpendicular crosspieces that are 26 inches and 24 inches long, as shown in the figure. How long should Ak be so that $AB \perp BC$ and $AD \perp DC$?
- **48.** The lengths of the sides of a right triangle are x, x + 4, and x + 8 inches. What is the value of x? What is the length of the hypotenuse of the triangle?

47.

Lessons 4-6 and 4-7

Solve each equation by completing the square or using the Quadratic Formula.

49.
$$x^2 + 5x + 8 = 4$$

50.
$$2x^2 - 5x + 1 = 0$$

51.
$$x^2 - 7x = 0$$

52.
$$x^2 + 4x + 4 = 0$$

53.
$$x^2 - 7 = 0$$

54.
$$x^2 + 8x - 17 = 0$$

Prentice Hall Algebra 2 • Extra Practice
Copyright © by Pearson Education, Inc., or its affiliates. All Rights Reserved.

15

Extra Practice (continued)

Chapter 4

Evaluate the discriminant of each equation. Tell how many real solutions each equation has.

55.
$$x^2 + 4x = 17$$

56.
$$2x^2 + x = -1$$

57.
$$x^2 - 4x + 5 = 0$$

58.
$$2x^2 + 5x = 0$$

59.
$$x^2 - 19 = 1$$

60.
$$3x^2 = 8x - 4$$

61.
$$-2x^2 + 1 = 7x$$

62.
$$4x^2 + 4x = -1$$

63.
$$x^2 + 16 = 0$$

- **64.** The height y of a parabolic arch is given by $y = -\frac{1}{16}x^2 + 40$ horizontal distance fhorizontal distance from the center of the base of the arch. All distances are in feet.
 - **a.** What is the highest point on the arch?
 - **b.** How wide is the arch at the base to the nearest tenth of a foot?
- 65. An archer's arrow follows a parabolic path. The path of the arrow can be described by the equation $y = -0.005x^2 + 2x + 5$.
 - **a.** Describe the meaning of the *y*-intercept of the graph of the equation.
 - **b.** What is the horizontal distance the arrow travels before it hits the ground? Round your answer to the nearest foot.

Lesson 4-8

Simplify each number by using the imaginary number i.

66.
$$\sqrt{-9}$$

67.
$$\sqrt{-36}$$

68.
$$\sqrt{-80}$$

69.
$$\sqrt{-289}$$

70.
$$\sqrt{-175}$$

71.
$$\sqrt{-117}$$

Simplify each expression.

72.
$$(3-i)+(5-2i)$$

73.
$$(4+2i)(1-i)$$

74.
$$(4+2i) - (3+5i)$$

75.
$$(8-3i)(6+9i)$$

76.
$$(2+5i)-(-6+i)$$

77.
$$(-2-3i)(7-i)$$

Solve each equation. Check your answers.

78.
$$x^2 + 16 = 0$$

79.
$$3x^2 = x - 9$$

80.
$$x^2 + 10 = 4x - 2$$

Lesson 4-9

Solve each system.

$$\begin{cases} y = x^2 - 11x + 24 \\ y = x - 3 \end{cases}$$
81.

$$\begin{cases} y = x^2 + 2x - 8 \\ y = x + 4 \end{cases}$$

$$\begin{cases} y = 2x^2 + 9x - 5 \\ y = x + 5 \end{cases}$$

$$\begin{cases} y = x^2 - 3x - 7 \\ y = -x^2 - x + 5 \end{cases} \begin{cases} y = 2x^2 + x + 4 \\ y = -x^2 - x + 9 \end{cases}$$
85.

$$\begin{cases} y = 2x^2 + x + 4 \\ y = -x^2 - x + 9 \end{cases}$$

$$\begin{cases} y = x^2 - 2x - 1 \\ y = \frac{3}{4}x^2 + x - 6 \end{cases}$$