Types of Reactions

- There are five types of chemical reactions we will talk about:
 - 1. Synthesis reactions
 - 2. Decomposition reactions
 - 3. Single replacement reactions
 - 4. Double replacement reactions
 - 5. Combustion reactions
- You need to be able to identify the type of reaction and predict the product(s)

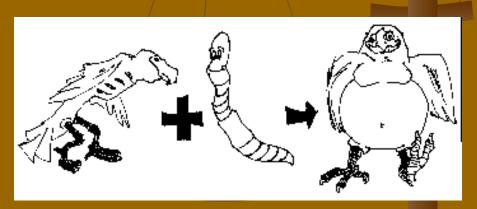
Steps to Writing Reactions

- Some steps for doing reactions
 - 1. Identify the type of reaction
 - 2. Predict the product(s) using the type of reaction as a model
 - 3. Balance it

Don't forget about the diatomic elements! (BrINClHOF) For example, Oxygen is O₂ as an element.

In a compound, it can't be a diatomic element because it's not an element anymore, it's a compound!

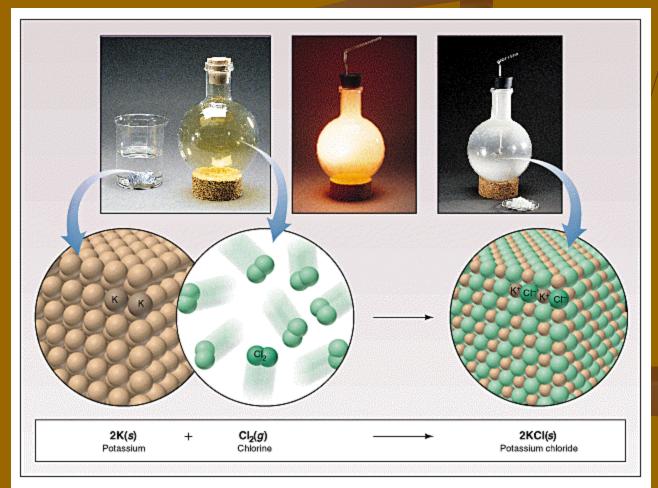
1. Synthesis reactions


©Synthesis reactions occur when two substances (generally **elements**) combine and form a compound. (Sometimes these are called combination or addition reactions.)

reactant + reactant → 1 product

©Basically: $A + B \rightarrow AB$

©Example: $2H_2 + O_2 \rightarrow 2H_2O$


©Example: $C + O_2 \rightarrow CO_2$

Synthesis Reactions

• Here is another example of a synthesis

reaction

Practice

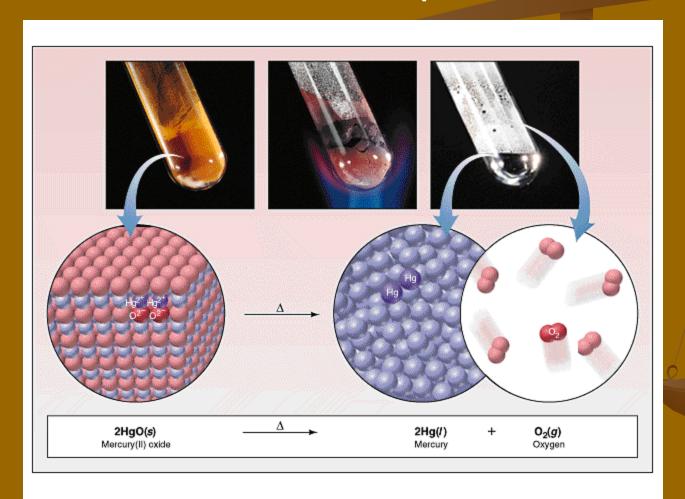
- Predict the products. Write and balance the following synthesis reaction equations.
- OSodium metal reacts with chlorine gas $Na_{(s)} + Cl_{2(q)} \rightarrow$
- ©Solid Magnesium reacts with fluorine gas $Mg_{(s)} + F_{2(g)} \rightarrow$
- ••Aluminum metal reacts with fluorine gas

$$Al_{(s)} + F_{2(g)} \rightarrow$$


2. Decomposition Reactions

Decomposition reactions occur when a compound breaks up into the elements or in a few to simpler compounds

®1 Reactant → Product + Product


©Example: $2 H_2O \rightarrow 2H_2 + O_2$

©Example: 2 HgO \rightarrow 2Hg + O₂

Decomposition Reactions

••Another view of a decomposition reaction:

Decomposition Exceptions

- ©Carbonates and chlorates are special case decomposition reactions that do not go to the elements.
 - ©Carbonates (CO₃²⁻) decompose to carbon dioxide and a metal oxide
 - Example: CaCO₃ → CO₂ + CaO
 - ©Chlorates (ClO₃-) decompose to oxygen gas and a metal chloride
 - Example: $2 \text{ Al}(ClO_3)_3 \rightarrow 2 \text{ AlCl}_3 + 9 O_2$
 - There are other special cases, but we will not explore those in Chemistry I

Practice

- Predict the products. Then, write and balance the following decomposition reaction equations:
- Solid Lead (IV) oxide decomposes $PbO_{2(s)} \rightarrow$
- Aluminum nitride decomposes
- $\bullet \qquad \mathsf{AIN}_{(\mathsf{S})} \to$

Practice

Identify the type of reaction for each of the following synthesis or decomposition reactions, and write the balanced equation:

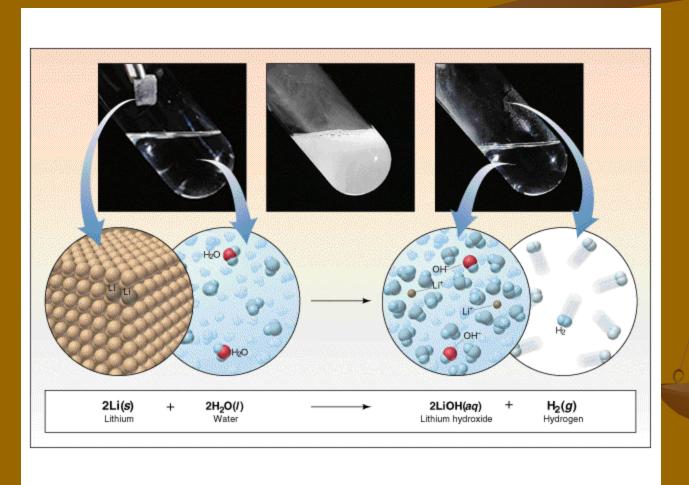
$$N_{2(g)} + O_{2(g)} \rightarrow Nitrogen monoxide$$

$$BaCO_{3(s)} \rightarrow$$

$$Ca_{(s)} + S_{(s)} \rightarrow$$

$$NI_{3(s)} \rightarrow$$

3. Single Replacement Reactions


- Single Replacement Reactions occur when one element replaces another in a compound.
- MA metal can replace a metal (+) OR
 a nonmetal can replace a nonmetal (-).
- @element + compound > element + compound
- $\bigcirc A + BC \rightarrow AC + B$ (if A is a metal) $\bigcirc R$

 $A + BC \rightarrow BA + C$ (if A is a nonmetal) (remember the cation always goes first!)

When H₂O splits into ions, it splits into H⁺ and OH⁻ (not H+ and O⁻² !!)

Single Replacement Reactions

••Another view:

Single Replacement Reactions

- Write and balance the following single replacement reaction equation:
- ©Zinc metal reacts with aqueous hydrochloric acid

$$Zn_{(s)}$$
 +² $HCl_{(aq)}$ \rightarrow $ZnCl_2 + H_{2(g)}$

Note: Zinc replaces the hydrogen ion in the reaction

Single Replacement Reactions

Sodium chloride solid reacts with fluorine gas

² NaCl_(s) + F_{2(g)}
$$\rightarrow$$
 ² NaF_(s) + Cl_{2(g)}

Note that fluorine replaces chlorine in the compound

OAluminum metal reacts with aqueous copper (II) nitrate

$$Al_{(s)}+ Cu(NO_3)_{2(aq)} \rightarrow$$

4. Double Replacement Reactions

- when a metal replaces a metal in a compound and a nonmetal replaces a nonmetal in a compound compound
- \bigcirc AB + CD \rightarrow AD + CB

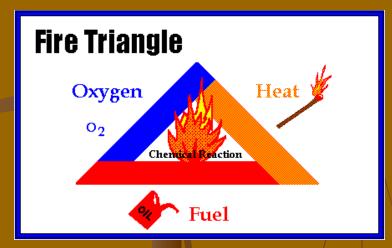
Double Replacement Reactions

Think about it like "foil"ing in algebra, first and last ions go together + inside ions go together

©Example:

$$AgNO_{3(aq)} + NaCl_{(s)} \rightarrow AgCl_{(s)} + NaNO_{3(aq)}$$

••Another example:

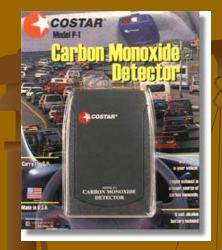

$$K_2SO_{4(aq)} + Ba(NO_3)_{2(aq)} \rightarrow KNO_{3(aq)} + BaSO_{4(s)}$$

Practice

- Predict the products. Balance the equation
- 1. $HCl_{(aq)} + AgNO_{3(aq)} \rightarrow$
- 2. $CaCl_{2(aq)} + Na_3PO_{4(aq)} \rightarrow$
- 3. $Pb(NO_3)_{2(aq)} + BaCl_{2(aq)} \rightarrow$
- 4. $FeCl_{3(aq)} + NaOH_{(aq)} \rightarrow$
- 5. $H_2SO_{4(aq)} + NaOH_{(aq)} \rightarrow$
- 6. $KOH_{(aq)} + CuSO_{4(aq)} \rightarrow$

5. Combustion Reactions

- Combustion reactions occur when a hydrocarbon reacts with oxygen gas.
- This is also called burning!!! In order to burn something you need the 3 things in the "fire triangle":
 - 1) A Fuel (hydrocarbon)
 - 2) Oxygen to burn it with
 - 3) Something to ignite the reaction (spark)



Combustion Reactions

- In general: $C_xH_y + O_2 \rightarrow CO_2 + H_2O$
- Products in combustion are ALWAYS carbon dioxide and water. (although incomplete burning does cause some byproducts like carbon monoxide)
- Combustion is used to heat homes and run automobiles (octane, as in gasoline, is C_8H_{18})

can be deadly.

The Tell-Tale Face of Carbon Monoxide Poisoning

*Edgar Allan Poe's drooping eye and

mouth are signs of CO poisoning.

FOR MORE

INFORMATION:

MCS REFERRAL

& RESOURCES www.mcsrr.org

1-800-466-9320

CARBON MONOXIDE

SURVIVORS

www.carbonmonexide.org

FLU-LIKE SYMPTOMS

- 1. Headache
- 2. Fatigue or Weakness
- 3. Muscle Aches or Pains
- 4. Nausea or Vomiting
- Diarrhea or Bloating
- 6. Confusion or Memory Loss
- 7. Dizziness or Incoordination
- 8. Difficult or Shallow Breathing
- 9. Rapid Heart Beat or Chest Pain
- 10. Changes in Sensory Sensitivity to Lights, Sounds, Odors, Tastes or Touch

AT RISK FROM CARBON MONOXIDE

- CO is most harmful to pregnant women, children, the elderly and anyone with a chronic disorder affecting the blood, brain, heart, lungs or muscles, such as Anemia, Alzheimer's, Angina, Asthma or ALS.
- CO also worsens and may cause Autism, Chronic Fatigue Syndrome, Depression, Fibromyalgia, Impotence, Multiple Chemical Sensitivity, Parkinsonism and Psychiatric Disorders.

SOURCES OF CARBON MONOXIDE

- External from combustion sources such as vehicles (especially in winter and in buildings with attached garages), furnaces, water heaters, space heaters, ovens, tobacco smoke, explosives and gasoline-powered appliances of all kinds, especially generators and compressors.
- Internal from breakdown of heme and inhaled or ingested dichloromethane, also known as methylene chloride, a common ingredient in solvents and spray cans.

EFFECTS OF CARBON MONOXIDE

- CO binds more tightly than oxygen to heme proteins, especially hemoglobin, myoglobin and cytochromes, impairing function of brain, musde, liver and other organs.
- CO increases blood sugar, acidosis and polycythemia while decreasing metabolism, blood pressure and body temperature; at high levels, CO may cause coma or death within minutes.
- CO acts as a neurotransmitter modulating heart rate, respiration, blood vessel tone, learning, memory, sexual function and sensory sensitization (or habituation) to odors, light and sounds.
- CO poisoning in pregnancy may result in birth defects, mental retardation and low birth weight.
- Reoxygenation may cause brain lipid peroxidation with chronic neurological effects appearing later

TREATMENT OF CARBON MONOXIDE POISONING

- 100% oxygen daily hyperbaric if severe or normobaric, humidified and via a partial non-rebreather mask. Continue daily treatments of 1 to 2 hours until symptoms resolve and levels of carboxyhemoglobin, CO in exhaled breath and the arterio-venous gap in the partial pressure of oxygen all return to normal.
- In non-smokers, normal COHb is under 1.6%, normal breath CO is under 4ppm, and the normal arteriovenous PO2 gap is over 60 mmHg (venous sample drawn from antecubital fossa without a tourniquet).
- © Copyright 2000, Albert Donnay, All rights reservel.

Combustion Reactions

Edgar Allen Poe's drooping eyes and mouth are potential signs of CO poisoning.

Combustion

- ©Example
 - \bullet C₅H₁₂ + 8 O₂ \rightarrow 5 CO₂ + 6 H₂O
- Write the products and balance the following combustion reaction:
 - \bullet C₁₀H₂₂ + O₂ \rightarrow

Mixed Practice

- State the type, predict the products, and balance the following reactions:
- 1. BaCl₂ + H₂SO₄ \rightarrow
- 2. $C_6H_{12} + O_2 \rightarrow$
- 3. $Zn + CuSO_4 \rightarrow$
- 4. Cs + Br₂ \rightarrow
- 5. FeCO₃ \rightarrow
- 6. The End!!!!!!

Total Ionic Equations

(HONORS ONLY)

- Once you write the molecular equation (synthesis, decomposition, etc.), you should check for reactants and products that are soluble or insoluble.
- We usually assume the reaction is in water
- We can use a solubility table to tell us what compounds dissolve in water.
- If the compound is soluble (does dissolve in water), then splits the compound into its component ions
- If the compound is insoluble (does NOT dissolve in water), then it remains as a compound

Solubility Table

	gce [®]	die office	ridie oror	ilde cate	orate chic	ide chic	mate mud	okde lodie	SE ZHYÊ	ie go	oride oxid	e gra	othate out	die suff	de outte
Al	S	I	S		S		ı	S	S		ı	ı	S		
NH ₄ +	S	S	Ø	S	Ø	Ø	ഗ	S	S	Ø		S	S	S	s
Ва	S	Ι	Ø		S	_	ω	S	S	_	s	Ι	I	d	ı
Bi		s	d	I	d		_	_	d	_	ı	s	d	Ι	
Ca	S	Ι	Ø	I	S		I (s)	S	S	_	ı	Ι	I	d	ı
Co ²⁺	S	Ι	Ø	-	S	_	_	S	S	_	ı	Ι	S	Ι	ı
Cu ²⁺	S	Ι	Ø	-	S	_	_		S	_	ı	Ι	S	Ι	
Fe ²⁺	S	Ι	Ø	s	S		_	S	S	_	ı	Ι	S	Ι	s
Fe ³⁺	1	I	Ø	-	S		_		S	S	ı	Ι	S	Ι	
Pb ²⁺	S	I	Ι	I	I	I	I	I	S	I	ı	ı	ı	ı	ı
Mg	S	d	S	I	S	S	Ι	S	S	I	ı	ı	S		s
Hg ²⁺	S	1	Ι	I	S	s		I	S	I	ı	ı	d	ı	
К	S	s	S	S	S	S	S	S	S	S	S	S	S	S	s
Ag ⁺	I	I	I	I	I	I	d	I	S	I	I	I	I (s)	I	I
Na	S	S	S	S	S	S	S	S	S	S	S	S	S	S	s _
Zn ²⁺	S	ı	S	ı	S	ı	ı	S	S	ı	ı	ı	S	ı	1

Solubilities Not on the Table!

- Gases only slightly dissolve in water
- Strong acids and bases dissolve in water
 - Hydrochloric, Hydrobromic, Hydroiodic, Nitric, Sulfuric, Perchloric Acids
 - Group I hydroxides (should be on your chart anyway)
- Water slightly dissolves in water! (H+ and OH-)
- For the homework... SrSO₄ is insoluble; BeI₂ and the products are soluble
- There are other tables and rules that cover more compounds than your table!

Total Ionic Equations

Molecular Equation:

$$K_2CrO_4 + Pb(NO_3)_2 \rightarrow PbCrO_4 + 2 KNO_3$$

SolubleSolubleInsoluble Soluble

Total Ionic Equation:

$$2 K^{+} + CrO_{4}^{-2} + Pb^{+2} + 2 NO_{3}^{-} \rightarrow$$

Net Ionic Equations

These are the same as total ionic equations, but you should cancel out ions that appear on BOTH sides of the equation

Total Ionic Equation:

$$2 K^{+} + CrO_{4}^{-2} + Pb^{+2} + 2 NO_{3}^{-} \rightarrow$$

$$PbCrO_4(s) + 2 K^+ + 2 NO_3^-$$

Net Ionic Equation:

$$CrO_4^{-2} + Pb^{+2} \rightarrow PbCrO_4(s)$$

Net Ionic Equations

■ Try this one! Write the molecular, total ionic, and net ionic equations for this reaction: Silver nitrate reacts with Lead (II) Chloride in hot water.

Molecular:

Total Ionic:

Net Ionic: