Warm Up Simplify each radical.

1 $\sqrt{12}$ $2\sqrt{3}$ $\sqrt{50}$ $5\sqrt{2}$ $\sqrt{75}$ $5\sqrt{3}$

Find the distance between each pair of points. Write your answer in simplest radical form.

4.
$$C(1, 6)$$
 and $D(-2, 0) = \frac{3\sqrt{5}}{5}$
5. $E(-7, -1)$ and $F(-1, -5) = \frac{2\sqrt{13}}{2}$

Apply similarity properties in the coordinate plane.

Use coordinate proof to prove figures similar.

Holt Geometry

A **<u>dilation</u>** is a transformation that changes the size of a figure but not its shape.

The **preimage** and the **image** are <u>always</u> similar.

A **<u>scale factor</u>** describes how much the figure is enlarged or reduced.

Helpful Hint

If the scale factor of a dilation is greater than 1 (k > 1), it is an *enlargement*. If the scale factor is less than 1 (k < 1), it is a *reduction*.

Example 1: Computer Graphics Application

Draw the border of the photo after a

dilation with scale factor $\frac{5}{2}$

Holt Geometry

Dilations and Similarity in the Coordinate Plane 7-6 **Step 1** Multiply the vertices of the photo A(0, 0), $B(0, 4), C(3, 4), \text{ and } D(3, 0) \text{ by } \frac{5}{2}$ Rectangle Rectangle ABCD A'B'C'D' $A(0,0) \longrightarrow A'\left(0 \bullet \frac{5}{2}, 0 \bullet \frac{5}{2}\right)$ →*A*'(0,0) $B(0,4) \longrightarrow B'\left(0 \bullet \frac{5}{2}, 4 \bullet \frac{5}{2}\right) \longrightarrow B'(0,10)$ $C(3,4) \longrightarrow C'\left(3 \cdot \frac{5}{2}, 4 \cdot \frac{5}{2}\right) \longrightarrow C'(7.5,10)$ $D(3,0) \longrightarrow D'\left(3 \bullet \frac{5}{2}, 0 \bullet \frac{5}{2}\right) \longrightarrow D'(7.5,0)$

Holt Geometry

Step 2 Plot points A'(0, 0), B'(0, 10), C'(7.5, 10), and D'(7.5, 0).

Draw the rectangle.

Check It Out! Example 1

What if...? Draw the border of the original photo after a dilation with scale factor $\frac{1}{2}$.

Dilations and Similarity in the Coordinate Plane 7-6 **Step 1** Multiply the vertices of the photo A(0, 0), $B(0, 4), C(3, 4), \text{ and } D(3, 0) \text{ by } \frac{1}{2}$ Rectangle Rectangle ABCD A'B'C'D' $A(0,0) \longrightarrow A'\left(0 \bullet \frac{1}{2}, 0 \bullet \frac{1}{2}\right)$ →*A*′(0,0) $B(0,4) \longrightarrow B'\left(0 \bullet \frac{1}{2}, 4 \bullet \frac{1}{2}\right) \longrightarrow$ *→B*'(0,2) $C(3,4) \longrightarrow C'\left(3 \bullet \frac{1}{2}, 4 \bullet \frac{1}{2}\right) \longrightarrow C'(1.5,2)$ $D(3,0) \longrightarrow D'\left(3 \bullet \frac{1}{2}, 0 \bullet \frac{1}{2}\right) \longrightarrow D'(1.5,0)$

Check It Out! Example 1 Continued

Step 2 Plot points A'(0, 0), B'(0, 2), C'(1.5, 2), and D'(1.5, 0).

Draw the rectangle.

Example 2: Finding Coordinates of Similar Triangle

Given that $\Delta TUO \sim \Delta RSO$, find the coordinates of U and the scale factor.

Since $\Delta TUO \sim \Delta RSO$,

12*OU* = 144 *Cross Products Prop.*

OU = 12 Divide both sides by 12.

R(-12, 0)

S(0, 16)

T(-9, 0)

Х

Û

U lies on the y-axis, so its x-coordinate is 0. Since OU = 12, its y-coordinate must be 12. The coordinates of U are (0, 12).

$$(0, 16) \longrightarrow \left(0 \bullet \frac{3}{4}, 16 \bullet \frac{3}{4}\right) \longrightarrow (0, 12)$$

So the scale factor is $\frac{3}{4}$.

Check It Out! Example 2

Given that $\Delta MON \sim \Delta POQ$ and coordinates P (-15, 0), M(-10, 0), and Q(0, -30), find the coordinates of N and the scale factor.

Since $\Delta MON \sim \Delta POQ$,

$$\frac{OM}{OP} = \frac{ON}{OQ}$$

$$\frac{10}{15} = \frac{ON}{30}$$
Substitute 10 for OM,
15 for OP, and 30 for OQ.
15 ON = 300 Cross Products Prop.

ON = 20 Divide both sides by 15.

Holt Geometry

Copyright © by Holt, Rinehart and Winston. All Rights Reserved.

ΡM

Check It Out! Example 2 Continued

N lies on the y-axis, so its x-coordinate is 0. Since ON = 20, its y-coordinate must be -20. The coordinates of N are (0, -20).

$$(0, -30) \longrightarrow \left(0 \bullet \frac{2}{3}, -30 \bullet \frac{2}{3}\right) \longrightarrow (0, -20)$$

So the scale factor is $\frac{2}{3}$.

Example 3: Proving Triangles Are Similar

Given: *E*(−2, −6), *F*(−3, −2), *G*(2, −2), *H*(−4, 2), and *J*(6, 2).

Prove: $\Delta EHJ \sim \Delta EFG$.

Step 1 Plot the points and draw the triangles.

Step 2 Use the Distance Formula to find the side lengths.

$$EH = \sqrt{\left[-4 - \left(-2\right)\right]^2 + \left[2 - \left(-6\right)\right]^2} \quad EJ = \sqrt{\left[6 - \left(-2\right)\right]^2 + \left[2 - \left(-6\right)\right]^2} \\ = \sqrt{68} = 2\sqrt{17} \qquad \qquad = \sqrt{128} = 8\sqrt{2}$$

$$EF = \sqrt{\left[-3 - \left(-2\right)\right]^2 + \left[-2 - \left(-6\right)\right]^2} EG = \sqrt{\left[2 - \left(-2\right)\right]^2 + \left[-2 - \left(-6\right)\right]^2} = \sqrt{32} = 4\sqrt{2}$$

Step 3 Find the similarity ratio.

$$\frac{EH}{EF} = \frac{2\sqrt{17}}{\sqrt{17}} \qquad \qquad \frac{EJ}{EF} = \frac{8\sqrt{2}}{4\sqrt{2}}$$
$$= \frac{2}{1} \qquad \qquad = \frac{4}{2}$$
$$= 2 \qquad \qquad = 2$$

Since $\frac{EH}{EF} = \frac{EJ}{EG}$ and $\angle E \cong \angle E$, by the Reflexive Property, $\Delta EHJ \approx \Delta EF$ by SAS ~ .

Check It Out! Example 3

Given: *R*(-2, 0), *S*(-3, 1), *T*(0, 1), *U*(-5, 3), and *V*(4, 3).

- **Prove:** $\Delta RST \sim \Delta RUV$
 - **Step 1** Plot the points and draw the triangles.

Check It Out! Example 3 Continued

Step 2 Use the Distance Formula to find the side lengths.

$$RS = \sqrt{\left[-3 - (-2)\right]^{2} + \left[1 - (0)\right]^{2}} \quad RT = \sqrt{\left[0 - (-2)\right]^{2} + \left[1 - (0)\right]^{2}} \\ = \sqrt{2} \qquad \qquad = \sqrt{5}$$
$$RU = \sqrt{\left[-5 - (-2)\right]^{2} + \left[3 - (0)\right]^{2}} \quad RV = \sqrt{\left[4 - (-2)\right]^{2} + \left[3 - (0)\right]^{2}} \\ = \sqrt{18} = 3\sqrt{2} \qquad \qquad = \sqrt{45} = 3\sqrt{5}$$

Check It Out! Example 3 Continued

Step 3 Find the similarity ratio.

$RS \sqrt{2}$		$\sqrt{5}$
$\overline{RU}^{=}\overline{3\sqrt{2}}$	\overline{RV}^{-1}	3√5
_1	_	1
3		3

Since $\frac{RS}{RU} = \frac{RT}{RV}$ and $\angle R \cong \angle R$, by the Reflexive Property, $\Delta RS = \Delta RUV$ by SAS ~ .

Example 4: Using the SSS Similarity Theorem

Graph the image of ΔABC after a dilation with scale

factor $\frac{2}{3}$

Verify that $\Delta A'B'C' \sim \Delta ABC$.

Step 1 Multiply each coordinate by $\frac{2}{2}$ to find the coordinates of the vertices of $\Delta A'B'C^3$.

$$A(0,3) \longrightarrow A'\left(0 \cdot \frac{2}{3}, 3 \cdot \frac{2}{3}\right) \longrightarrow A'(0,2)$$
$$B(3,6) \longrightarrow B'\left(3 \cdot \frac{2}{3}, 6 \cdot \frac{2}{3}\right) \longrightarrow B'(2,4)$$
$$C(6,0) \longrightarrow C'\left(6 \cdot \frac{2}{3}, 0 \cdot \frac{2}{3}\right) \longrightarrow C'(4,0)$$

Step 2 Graph $\Delta A'B'C'$.

Step 3 Use the Distance Formula to find the side lengths.

$$AB = \sqrt{(3-0)^{2} + (6-3)^{2}} \qquad A'B' = \sqrt{(2-0)^{2} + (4-2)^{2}}$$
$$= \sqrt{18} = 3\sqrt{2} \qquad = \sqrt{8} = 2\sqrt{2}$$

$$BC = \sqrt{(6-3)^2 + (0-6)^2}$$
$$= \sqrt{45} = 3\sqrt{5}$$

$$B'C' = \sqrt{(4-2)^2 + (0-4)^2}$$
$$= \sqrt{20} = 2\sqrt{5}$$

$$AC = \sqrt{(6-0)^2 + (0-3)^2} = \sqrt{45} = 3\sqrt{5}$$

$$A'C' = \sqrt{(4-0)^2 + (0-2)^2} = \sqrt{20} = 2\sqrt{5}$$

Holt Geometry

Step 4 Find the similarity ratio.

$$\frac{A'B'}{AB} = \frac{2\sqrt{2}}{3\sqrt{2}} = \frac{2}{3}, \frac{B'C'}{BC} = \frac{2\sqrt{5}}{3\sqrt{5}} = \frac{2}{3}, \frac{A'C'}{AC} = \frac{2\sqrt{5}}{3\sqrt{5}} = \frac{2}{3}$$

Since $\frac{A'B'}{AB} = \frac{B'C'}{BC} = \frac{A'C'}{AC}$, $\Delta ABC \sim \Delta A'B'C'$ by SSS ~.

Check It Out! Example 4

Graph the image of ΔMNP after a dilation with scale factor 3. Verify that $\Delta M'N'P' \sim \Delta MNP$.

Holt Geometry

Check It Out! Example 4 Continued

Step 1 Multiply each coordinate by 3 to find the coordinates of the vertices of $\Delta M'N'P'$.

$$M(-2,1) \longrightarrow M'(-2 \bullet 3, 1 \bullet 3) \longrightarrow M'(-6,3)$$
$$N(2,2) \longrightarrow N'(2 \bullet 3, 2 \bullet 3) \longrightarrow N'(6,6)$$
$$P(-1,-1) \longrightarrow P'(-1 \bullet 3, -1 \bullet 3) \longrightarrow P'(-3, -3)$$

Check It Out! Example 4 Continued

Step 2 Graph $\Delta M'N'P'$.

Holt Geometry

Check It Out! Example 4 Continued

Step 3 Use the Distance Formula to find the side lengths.

$$MP = \sqrt{(-1-(-2))^{2} + (-1-1)^{2}} \qquad M'P' = \sqrt{(-3-(-6))^{2} + (-3-3)^{2}}$$

= $\sqrt{5}$
= $3\sqrt{5}$
$$MN = \sqrt{(2-(-2))^{2} + (2-1)^{2}} \qquad M'N' = \sqrt{(6-(-6))^{2} + (6-3)^{2}}$$

= $\sqrt{17}$
= $3\sqrt{17}$
$$PN = \sqrt{(2-(-1))^{2} + (2-(-1))^{2}} \qquad P'N' = \sqrt{(6-(-3))^{2} + (6-(-3))^{2}}$$

= $3\sqrt{2}$
= $9\sqrt{2}$

Check It Out! Example 4 Continued

Step 4 Find the similarity ratio.

$$\frac{M'P'}{MP} = \frac{3\sqrt{5}}{\sqrt{5}} = 3, \frac{M'N'}{MN} = \frac{3\sqrt{17}}{\sqrt{17}} = 3, \frac{P'N'}{PN} = \frac{9\sqrt{2}}{3\sqrt{2}} = 3$$

Since $\frac{M'P'}{MP} = \frac{M'N'}{MN} = \frac{P'N'}{PN}$, $\Delta MNP \sim \Delta M'N'P'$ by SSS ~.

Lesson Quiz: Part I

- **1.** Given X(0, 2), Y(-2, 2), and Z(-2, 0), find the coordinates of X', Y, and Z' after a dilation with scale factor -4. X'(0, -8); Y'(8, -8); Z'(8, 0)
- **2.** $\Delta JOK \sim \Delta LOM$. Find the coordinates of *M* and the scale factor.

Lesson Quiz: Part II

3. Given: *A*(-1, 0), *B*(-4, 5), *C*(2, 2), *D*(2, -1), *E*(-4, 9), and *F*(8, 3)

Prove: $\triangle ABC \sim \triangle DEF$

 $AB = \sqrt{34}, AC = \sqrt{13}, \text{ and } BC = 3\sqrt{5}.$ $DE = 2\sqrt{34}, DF = 2\sqrt{13}, \text{ and } EF = 6\sqrt{5}.$

Therefore,
$$\frac{AB}{DE} = \frac{AC}{DF} = \frac{BC}{EF} = \frac{1}{2}$$
 and $\triangle ABC \sim \triangle DEF$
by SSS ~.

Homework

Worksheet 7.6

Holt Geometry