Warm Up

Convert each measurement.

- **1.** 6 ft 3 in. to inches 75 in.
- 2. 5 m 38 cm to centimeters 538 cm

Find the perimeter and area of each polygon.

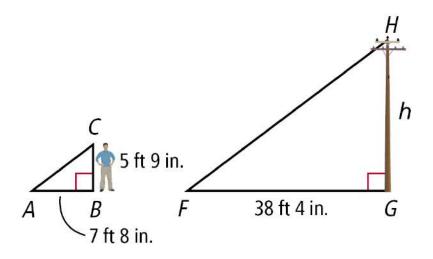
3. square with side length 13 cm
P = 52 cm, A = 169 cm²
4. rectangle with length 5.8 m and width 2.5 m

 $P = 16.6 \text{ m}, A = 14.5 \text{ m}^2$

Use ratios to make indirect measurements.

Use scale drawings to solve problems.

Holt Geometry


Indirect measurement is any method that uses formulas, similar figures, and/or proportions to measure an object.

Helpful Hint

Whenever dimensions are given in both feet and inches, you must convert them to either feet or inches before doing any calculations.

Example 1: Measurement Application

Tyler wants to find the height of a telephone pole. He measured the pole's shadow and his own shadow and then made a diagram. What is the height *h* of the pole?

Holt Geometry

Example 1 Continued

Step 1 Convert the measurements to inches.

AB = 7 ft 8 in. = (7 • 12) in. + 8 in. = 92 in.

- BC = 5 ft 9 in. = (5 12) in. + 9 in. = 69 in.
- FG = 38 ft 4 in. = (38 12) in. + 4 in. = 460 in.

Step 2 Find similar triangles.

Because the sun's rays are parallel, $\angle A \cong \angle F$. Therefore $\triangle ABC \sim \triangle FGH$ by AA \sim .

Example 1 Continued

Step 3 Find *h*. *Corr. sides are proportional.*

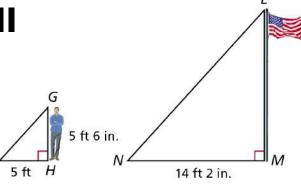
 $\frac{BC}{GH} = \frac{AB}{FG}$ $\frac{69}{h} = \frac{92}{460}$

Substitute 69 for BC, h for GH, 92 for AB, and 460 for FG.

Cross Products Prop.

92*h* = 69 • 460

Divide both sides by 92.


h = 345

The height *h* of the pole is 345 inches, or 28 feet 9 inches.

Holt Geometry

Check It Out! Example 1

A student who is 5 ft 6 in. tall measured shadows to find the height *LM* of a flagpole. What is *LM*?

Step 1 Convert the measurements to inches.

GH = 5 ft 6 in. = $(5 \cdot 12)$ in. + 6 in. = 66 in.

 $JH = 5 \text{ ft} = (5 \bullet 12) \text{ in.} = 60 \text{ in.}$

NM = 14 ft 2 in. = (14 • 12) in. + 2 in. = 170 in.

Check It Out! Example 1 Continued

Step 2 Find similar triangles.

Because the sun's rays are parallel, $\angle L \cong \angle G$. Therefore $\triangle JGH \sim \triangle NLM$ by AA \sim .

Step 3 Find *h*.

GH_LM	Corr. sides are proportional.
JH ⁻ MN	
66 _ h	Substitute 66 for BC, h for LM,
$\frac{1}{60} - \frac{1}{170}$	60 for JH, and 170 for MN.

 $60(h) = 66 \bullet 170$ Cross Products Prop.

h = 187 Divide both sides by 60.

The height of the flagpole is 187 in., or 15 ft. 7 in.

Holt Geometry

A **<u>scale drawing</u>** represents an object as smaller than or larger than its actual size.

The drawing's **<u>scale</u>** is the ratio of any length in the drawing to the corresponding actual length.

Remember!

A proportion may compare measurements that have different units.

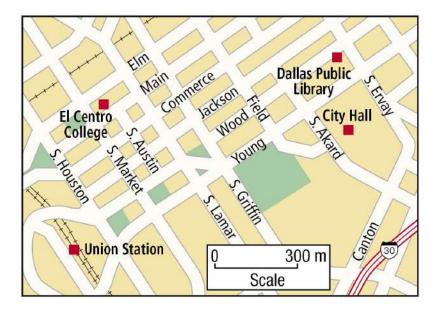
Example 2: Solving for a Dimension

On a Wisconsin road map, Kristin measured a distance of $11\frac{1}{8}$ in. from Madison to Wausau. The scale of this map is 1inch:13 miles. What is the actual distance between Madison and Wausau to the nearest mile?

Example 2 Continued

To find the actual distance *x* write a proportion comparing the map distance to the actual distance.

$$\frac{11\frac{1}{8}}{x} = \frac{1}{13}$$


$$1x = 11\frac{1}{8}(13) \quad Cross \ Products \ Prop.$$

$$x \approx 145 \qquad Simplify.$$

The actual distance is 145 miles, to the nearest mile.

Check It Out! Example 2

Find the actual distance between City Hall and El Centro College.

Holt Geometry

Check It Out! Example 2 Continued

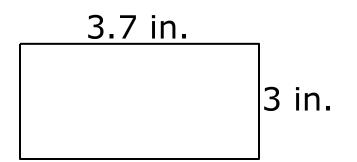
To find the actual distance *x* write a proportion comparing the map distance to the actual distance.

$$\frac{3}{x} = \frac{1}{300}$$

$$1x = 3(300) \quad Cross \ Products \ Prop.$$

$$x \approx 900 \quad Simplify.$$

The actual distance is 900 meters, or 0.9 km.


Check It Out! Example 3

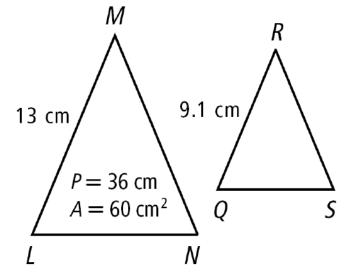
The rectangular central chamber of the Lincoln Memorial is 74 ft long and 60 ft wide. Make a scale drawing of the floor of the chamber using a scale of 1 in.:20 ft.

Check It Out! Example 3 Continued

Set up proportions to find the length ℓ and width w of the scale drawing.

	w 1
74 20	$\overline{60} = \overline{20}$
$20\ell=74$	20w = 60
$\ell = 3.7$ in.	<i>w</i> = 3 in

Holt Geometry


Similar Triangles Similarity, Perimeter, and Area Ratio				
STATEMENT	RATIO			
$\triangle ABC \sim \triangle DEF$ $A D$	Similarity ratio: $\frac{AB}{DE} = \frac{AC}{DF} = \frac{BC}{EF} = \frac{1}{2}$			
$B = \frac{5}{3} + \frac{4}{C} = 10 = 8$	Perimeter ratio: $\frac{\text{perimeter } \triangle ABC}{\text{perimeter } \triangle DEF} = \frac{12}{24} = \frac{1}{2}$			
$E \xrightarrow{6} F$	Area ratio: $\frac{\text{area} \triangle ABC}{\text{area} \triangle DEF} = \frac{6}{24} = \frac{1}{4} = \left(\frac{1}{2}\right)^2$			

Theorem 7-5-1 (Proportional Perimeters and Areas Theorem)

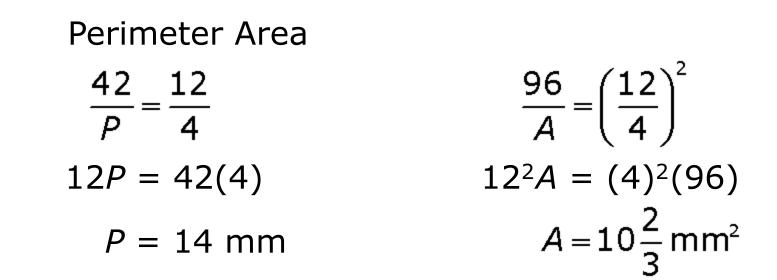
If the similarity ratio of two similar figures is $\frac{a}{b}$, then the ratio of their perimeters is $\frac{a}{b}$, and the ratio of their areas is $\frac{a^2}{b^2}$, or $\left(\frac{a}{b}\right)^2$.

Example 4: Using Ratios to Find Perimeters and Areas

Given that $\Delta LMN: \Delta QRT$, find the perimeter *P* and area *A* of ΔQRS .

The similarity ratio of ΔLMN to ΔQRS is $\frac{13}{9.1}$.

Example 4 Continued

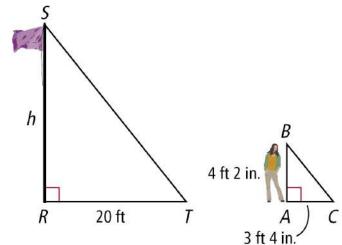

Perimeter Area

 $\frac{60}{A} = \left(\frac{13}{9.1}\right)^2$ 36 13 $\frac{1}{P} = \frac{1}{91}$ 169A = (82.81)(60)13P = 36(9.1)13P = 327.6169A = 4968.6 $A = 29.4 \text{ cm}^2$ P = 25.2The perimeter of $\triangle QRS$ is 25.2 cm, and the area is

29.4 cm².

Check It Out! Example 4

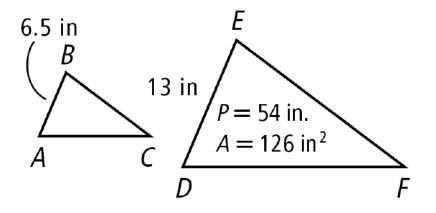
 $\triangle ABC \sim \triangle DEF$, BC = 4 mm, and EF = 12 mm. If P = 42 mm and $A = 96 \text{ mm}^2$ for $\triangle DEF$, find the perimeter and area of $\triangle ABC$.



The perimeter of $\triangle ABC$ is 14 mm, and the area is 10.7 mm².

Holt Geometry

Lesson Quiz: Part I


1. Maria is 4 ft 2 in. tall. To find the height of a flagpole, she measured her shadow and the pole's shadow. What is the height h of the flagpole? 25 ft

2. A blueprint for Latisha's bedroom uses a scale of 1 in.:4 ft. Her bedroom on the blueprint is 3 in. long. How long is the actual room? 12 ft

Lesson Quiz: Part II

3. $\triangle ABC \sim \triangle DEF$. Find the perimeter and area of $\triangle ABC$.

P = 27 in., *A* = 31.5 in²

Holt Geometry