Science Physics Unit 9: Magnetism

	Coupotion: Nothing "just happone" Eventhing is severed
	 Causation: Nothing "just happens." Everything is caused. Interrelatedness: Everything in the universe is connected to
	everything else in the universe.
Essential	 Dynamism: Everything is changing in some way all the time.
Understandings	 Entropy: Change has direction. Generally, simple precedes
	complex. Generally, order changes toward disorder.
	 Uniformitarianism: The way the universe works today is the way it
	worked yesterday and the way it will work tomorrow.
	 How does electricity induce magnetism in a variety of metals
	What is a magnetic dipole?
Essential	How is a magnetic field a form of potential energy?
Questions	How do generators produce alternating current?
	 How to transformers convert electrical current to allow the long-
	distance transmission of electrical power?
	 Magnetic fields are a form of potential energy.
	 Generators produce alternating current.
Essential	 Faraday's Law relating to the creation of electric fields by the
Knowledge	relative motion of magnetic fields.
5	 Magnetic fields produce magnetic forces.
	 Magnetic fields can interact with objects without coming into
	physical contact with them.
	• Terms:
	 electromagnet, electromagnetic induction, Faraday's Law,
Vocabulary	generator, magnetic domain, magnetic field, magnetic pole,
,	transformer
	 Use mathematics to calculate magnetic field strength.
Essential	 Use mathematics to calculate change in voltage due to transformer
Skills	USE.
	 Describe the shape and nature of a magnetic field.
	 Interpret magnetic field lines to determine direction and magnitude.

Science Physics Unit 9: Magnetism

	Science and Technology
	Science and Technology C. The Scientific and Technological Enterprise
	•
	C2.Understandings About Science and Technology
	Students explain how the relationship between scientific inquiry
	and technological design influences the advancement of ideas,
	products, and systems.
	a. Provide an example that shows how science advances with
	the introduction of new technologies and how solving
	technological problems often impacts new scientific
	knowledge.
Related	b. Provide examples of how creativity, imagination, and a good
Maine Learning	knowledge base are required to advance scientific ideas and
Results	technological design.
	c. Provide examples that illustrate how technological solutions
	to problems sometimes lead to new problems or new fields
	of inquiry.
	D. The Physical Setting
	D4.Force and Motion
	Students understand that the laws of force and motion are the
	same across the universe.
	f. Describe kinetic energy (the energy of motion), potential
	energy (dependent on relative position), and energy
	contained by a field (including electromagnetic waves) and
	apply these understandings to energy problems.
Sample	 Word problem worksheets
Lessons	 Magnetism labs
And	 Lectures
Activities	 Magnetism demonstrations
	Magnetism videos
Sample	Chapter tests
Classroom	 Quizzes
Assessment	 Laboratory reports
Methods	
	<u>Publications:</u>
	 <u>Physical Science</u> - Glencoe
Sample	MARVEL Data bases
Resources	 GALE Resource Data bases
	 <u>Videos:</u>
	 <u>The Mechanical Universe</u>