

Physics Tuesday, September 13

Warm Up

- Attendance Questions
- New Buddies
- Warm Up
- Michigan
 Energy
 Exploration

Our first unit is Energy Flow and Earth's Systems. What does that mean to you? What might we be learning about?

Reminders

Is it Science CER Summative Past Due-TURN IN ASAP!

*

E

Partner Introductions

1. Name 2. Grade 3. Why you took this class 4. What are some positive attributes you bring to group work and collaborative work?

 \mathbf{O}

Energy Flow and Earth's Systems

Unit 1:

Physics Wednesday, September 14

Agenda

Warm Up

Reminders

- Attendance Question
- Warm Up
- Michigan
 Energy
 Exploration
 Wrap Up

You will be getting a new table/group. What was something you learned so far by looking at energy use in Michigan? Is it Science CER Summative Past Due-TURN IN ASAP!

*

E

Physics Wednesday, September 14

Agenda

Warm Up

Reminders

- Attendance Question
- Warm Up
- Michigan Energy Exploration Wrap Up

What was something you learned so far by looking at energy use in Michigan? Is it Science CER Summative Past Due-TURN IN ASAP!

*

E

米

Physics Thursday, September 15

Agenda

Warm Up

Reminders

- Attendance Questions
- Warm Up
- Lab Group Jobs
- Electricity Exploration

Take out your Energy in Michigan Exploration from yesterday. Write down two new things you learned. Is it Science CER Summative Past Due-TURN IN ASAP!

*

How Does This...

Turn Into This?

 \bigcirc

Lab Group Jobs

Group Leader

Lead team to goals of the day, keeps group focused Materials Manager

Keeps track of all materials

Scribe

Makes sure all students write down all information

Task Manager

Makes sure group is following task or directions

*

Lab Expectations

https://docs.google.com/presentation/d/1V5HO4IINRqSYDlPRYVryxf-cFXSYc3Dr8zGPzJ-T4xE/edit?usp=sharing

Observations and Inquiry

Look at competency rubrics

쑸

Physics Friday, September 16

Agenda

Warm Up

Reminders

- Attendance Questions
- Warm Up
- Electricity Exploration
- Debrief
- Choice Boards

Describe what we did in our labs so far yesterday. How do you think this relates to electricity? Is it Science CER Summative Past Due- I'm grading today

Ē

Physics Monday, September 19

*

E

Agenda

Warm Up

Reminders

- Attendance Question
- Warm Up
- Electricity
 Exploration
 Debrief
- Choice Boards

Take out your labs from last week. What are some patterns you noticed?

Electrostatics Assessments (in class) start Thursday

Physics Tuesday, September 20

Warm Up

Reminders

- Attendance Question
- Warm Up
- Van de Graaff
 Demos
- Class
 Conclusions
 from the last 4
 days!

Take out your notebook. What does it mean to make high quality observations?

Electrostatics Assessments NEXT WEEK :)

*

Physics Wednesday, September 21

Agenda

Warm Up

Reminders

- Attendance Question
- Conclusions from the last 4 days!
- New Partners
- E&M Demos

Take out your notebook and observations from the last 4 days. Write down 3 trends you noticed.

Electrostatics Assessments NEXT WEEK :)

*

尜

Physics Friday, September 23

*

E

Agenda

Warm Up

Reminders

- Attendance Question
- E&M Demos

Did you finish your observations from yesterday? Electrostatics Assessments NEXT WEEK :)

米

Neutral and Neutral

쑸

+

Charged and Neutral Charged and Charged Charged and Metal

*

To Do Today

Review E&M observations - takeaways Review and complete Impact of Renewable Energy

0

쑸

+

+

*

Physics Wednesday, September 28

Agenda

Warm Up

Reminders

- Attendance Question
- Partners
- Impact of Renewable Energy Conclusions
- Class
 Conclusions
 E&M

What is something that surprised you from the Impacts of Renewable Energy Exploration? Electrostatics Assessments Thursday and Friday!

*

E

https://scied.ucar.edu/interac tive/simple-climate-model

*

E&M Demos BIG Conclusions

Modeling and make conclusions...

1. Magnet Interactions with other magnets

2. Magnet Interactions with other objects

3. Iron Filings Interactions (back of room)

Physics Thursday, September 29

Warm Up

Reminders

- Attendance Question
- Electrostatics Assessment Part 1 (CER)

Sit where you did yesterday. Take out your observations from electrostatics! Electrostatics Assessments Thursday and Friday!

*

✻

Physics Assessment

• Claim

- Model what you think you will happen in the three situations
- Situation #3 should say "blue balloon"
- Evidence
 - 3 separate pieces of evidence
 - Model from Electrostatics Demos and PhET
 - Do not write "Demo #1" or "PhET Lab"
- Reasoning
 - Explain the Evidence and tie it to the claim
- When done turn it in and grab a Part 2 to work on for tomorrow.

Physics Friday, September 30

Agenda

Warm Up

Reminders

- Attendance Question
- Turn in Part 1 (if needed)
- Electrostatics Assessment Part 2

Sit where you did yesterday.

Electrostatics Assessments Thursday and Friday!

*

Physics Monday, October 3

Warm Up

*

E

Agenda

- Attendance Question
- Lab Space
- Turn in Part 1 (if needed)
- Part 2 Finish and Review
- Energy Transformation KWL
- Project Intro

Sit in your assigned seat!

Reminders

Wind Turbine Groups: 1, 2 or 3 students by tomorrow

- Data Table
- Graph
- Conclusion
- Sources of Error

KWL

Driving Question: What do I know about wind turbines?

Physics Tuesday, October 4

*

Ē

Agenda

- Project Intro
- Choose groups
- Work on brainstorming questions with group

Reminders

Bring in materials by tomorrow!

What variables can be changed when creating a wind turbine design?

✻

Furing

0

쑸

Project Intro

 \mathbf{O}

Variable 1: Number of Blades

• Iterations

- 1: 3 blades- 0.3 V
- 2: 4 blades- 0.4 V
- 3: 5 blades: 0.3 V
- We kept the material (cardboard), shape/size/length and angle the same for each
- Since 3 blades and 5 blades produced the same voltage, we went with 3 blades it was easier to build.

0

Today's Goal

- 1. Finish Presentation- should be around 5 minutes and expect follow up questions at the end
- 2. Turn in presentation, iteration forms, daily logs and teacher meetings form on Google Classroom

Tuesday & Wednesday

- 1. Find a seat where you can focus
- 2. Turn in presentation, iteration forms, daily logs and teacher meetings form on Google Classroom
- 3. Reflect on the question: How can we be an active and engaged member of the audience for our peers?
 Reminder: Thursday is a half day Hours 1 and 2 ONLY.
 Practice Block Schedule- What does it look like in person?
 How can it help us learn better?

Let's talk about labs...

- What is a challenge when you do a lab in a science class over multiple days?
- How would the results and experience improve if you didn't have to go over multiple days?

*

Which angle produces the longest range?

쑸

쑸

* Which angle produces the longest range?

Materials: Launcher, Steel Ball, Carbon Paper, Meter Stick.

Testing angles 15-75 degrees moving up by 10 degrees. 2-3 trials per angle

- Before we start taking data:
 - Independent, Dependent and Control Variables
 - Create a diagram and procedure
 - Data table for the experiment

Which angle produces the longest range?

- Independent, Dependent and Control Variables
- Create a diagram and procedure (update this from doing your experiment- include measurements and tools)
- Data table for the experiment

쑸

- Graph distance (y axis) vs. angle (x axis) scatter plot with trend line
- Conclusion to question referencing data and graph
- 5 sources of error and how they could have been prevented

Reflect on your experience

- How would this be different if we broke this up over multiple days?
- What challenges would we have?

