| | ESSENTIAL QUESTIONS/CONTENT | SKILLS | ASSESSMENTS | |-----------|---|---|---| | September | UNIT 1: MATHEMATICAL SKILLS AND MEASUREMENT CONCEPTS How are precision and accuracy different? What is the proper use of measuring tools? What are the benefits of the metric system? How are scalar and vector quantities represented and mathematically manipulated? | Compare English and metric units of measure. Learn to use measuring devices with precision. Properly use significant figures mathematically. Use vectors to represent addition of perpendicular displacement, force, and velocity. | Quizzes Tests Labs | | October | UNIT 2: MECHANICS – KINEMATICS (LINEAR) How is motion represented graphically? How are velocity, acceleration, and distance calculated? How are horizontal and vertical motions different? | Draw graphs of motion. Interpret graphs of motion using concepts of scope and area. Use significant figures, units, and precise measurements to analyze motion. Calculate velocity, acceleration, and distance in linear motion vertically and horizontally. | Quizzes Tests Labs | | November | UNIT 3: MECHANICS: KINEMATICS (TWO-DIMENSIONAL) What factors affect variables of projectiles? How are height and range of projectiles calculated? How are horizontal and vertical components analyzed? | Calculate time of flight for projectiles. Use time of flight to determine range and height of projectiles. Observe and demonstrate independency of horizontal and vertical components of projectiles. Diagram vectors representing projectile motion. | Quizzes Tests Research Lab | | | ESSENTIAL QUESTIONS/CONTENT | SKILLS | ASSESSMENTS | |-------------------------------------|---|---|---| | November -
December -
January | UNIT 4: MECHANICS – DYNAMICS What are Newton's Laws of Motion? What are forces? What is inertia? What types of friction exist? How are various forces calculated? UNIT 5: ENERGY How are potential and kinetic energy related? How is energy calculated and measured? | Define and exemplify forces acting on an object. State Newton's Three Laws of Motion. Identify and calculate static and kinetic friction. Resolve forces into various components. Calculate the spring constant of a spring. Calculate potential and kinetic energy and power. Observe and explain energy transformations. Prove the laws of energy and momentum | 3-5 page paper Presentation of findings Quizzes Tests Labs Quizzes Tests Research Lab Midterm Examination | | January - | How are energy and momentum related and conserved? How is energy transformed? How is power related to energy? UNIT 6: ELECTROSTATICS | Trove the laws of chergy and momentum conservation. Draw electric fields for point charges. | • Quizzes | | February | How is static electricity different and the same as standard electricity? How is static electricity created? How is static electricity measured? | Use Coulomb's Law to calculate forces between charges. Create and observe static charges. | TestsLabs | | | ESSENTIAL QUESTIONS/CONTENT | SKILLS | ASSESSMENTS | |---------------------|--|--|--| | February –
March | UNIT 7: ELECTRICITY What are electrical fields and what are their uses? How was the elementary unit of charge determined? How are electricity and magnetism related? What is the difference between a series and parallel circuit? What is current and how is it defined? What is resistance and how is it related to current and voltage? How does a magnetic field affect a current carrying wire or a moving charged particle? | Draw electric fields for point charges and parallel plates. Simulate Milikan's oil drop experiment to calculate the charge on one electron. Draw magnetic field lines for a bar magnet. Construct and analyze electrical circuits. Calculate the current in a circuit. Use Ohm's law to calculate resistance. | Quizzes Tests Research Lab | | April - May | UNIT 8: MODERN PHYSICS What is the particle theory of light? How is light created? What is a photon? How do solar panels operate and produce electricity? Why do elements have individual atomic spectra? What do energy level diagrams tell you about elements? What is the standard model of particles? | Compare wave theory with particle theory. Describe light as photons. Read energy level diagrams. Use the photoelectric effect to calculate energy and wavelength of photons. Diagram and describe solar cells. Determine the energies of the spectral lines of various elements. Calculate the energy of a photon absorbed or released by an atom. Discover the building blocks of matter (quarks). | QuizzesTestsResearch Lab | | | ESSENTIAL QUESTIONS/CONTENT | SKILLS | ASSESSMENTS | |------------------------|--|---|---| | 10 Week
Mini-Course | WAVE THEORY How are waves created? How do waves travel? What different types of waves exist? What are the parts of a wave? How are wave parts related? How do waves interact with other waves and different media? Hooke's law Periodic motion | Classify waves as transverse or longitudinal. Diagram and label wave parts. Calculate wave period, frequency, and length. Use the law of reflection and Snell's Law to find wave direction after interaction with media. Observe and draw examples of reflection, refraction, dispersion, and diffraction. Calculate wavelength of laser light using Young's experiment. | Quizzes Tests Labs |