
# Physics Honors: Mirrors and Reflection

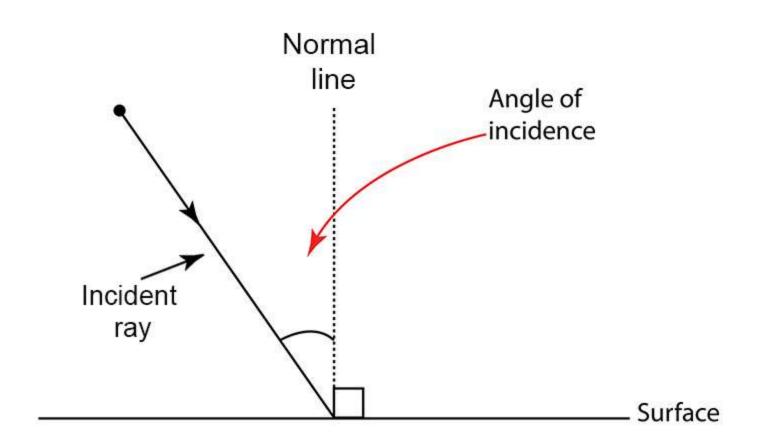
#### Reflection

**Reflection** is the change in direction of an electromagnetic wave at a surface that causes it to move away from that surface

Diffuse reflection sends the rays in many directions

Specular reflection sends rays in the same forward direction

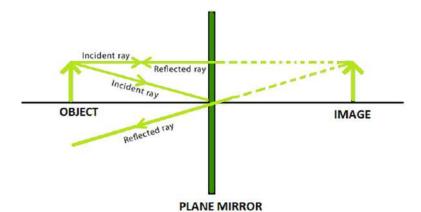



#### Law of Reflection

The law of reflection states that incoming and reflected angles are equal

= '

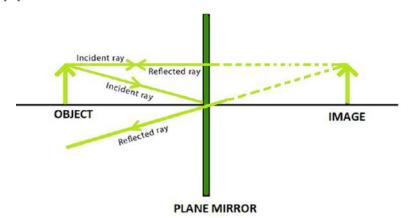
Angle of incidence - the angle between a ray that strikes a surface and the line perpendicular to that surface


Angle of reflection - The angle formed by the line perpendicular to a surface and the direction a reflected ray moves



## Objects and images

Object - a luminous source of light rays (like a light bulb) or an object that is illuminated by light rays, like a person


Image- An optical reproduction of an object formed by the combination of light rays reflected (or refracted) by a mirror (or lens)



### Flat Mirrors (Plane Mirrors)

Most of the mirrors you've ever seen or looked into are flat mirrors, or plane mirrors.

Plane mirrors form **Virtual Images**, which means the image is going to appear on the other side of the mirror





## Plane mirror image position

With a plane mirror, the image position is equal to the negative of the object position. The negative sign indicates that the image is behind the mirror

$$-X_i = X_o$$

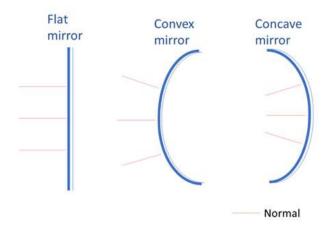
 $X_i$  = Image distance from mirror (meters)

X<sub>o</sub> = Object distance from mirror (meters)

# Image Height

With a plane mirror, image height is equal to object height

$$h_i = h_o$$


h<sub>i</sub> = image height (m)

h<sub>o</sub> = Object height (m)

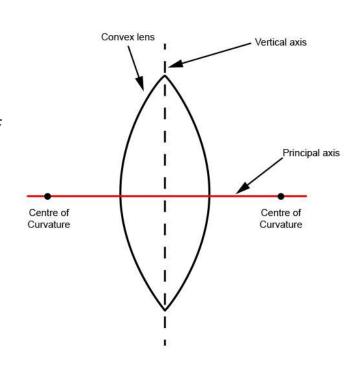
#### **Curved Mirrors**

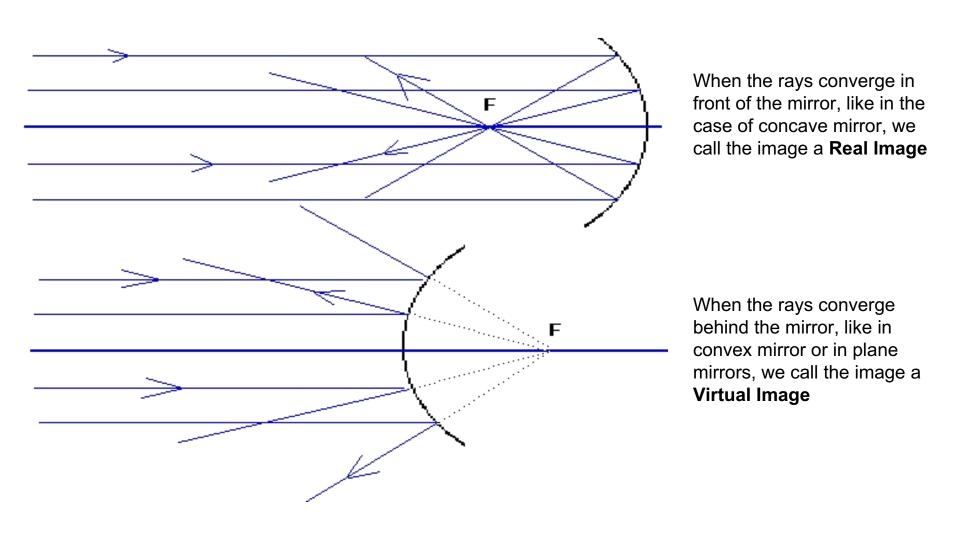
There are two main types of curved mirrors:

- 1. Concave mirrors, which curve inwards
- 2. Convex mirrors, which curve outward






#### Parts of Curved Mirrors


**Principal axis:** a line perpendicular to the mirror's surface that divides the mirror in half

Center of Curvature: If you extended the curve of the mirror into an entire circle, the center of curvature would be the middle point (on the principal axis).

**Focal point:** The point where incident rays that are parallel to the principal axis converge after reflecting from the mirror.

The focal length is  $\frac{1}{2}$  of the center of curvature





# Calculating Image Position

$$\frac{1}{f} = \frac{1}{x_i} + \frac{1}{x_o}$$

f = focal length

 $X_i$  = image distance

X<sub>o</sub> = object distance

## Magnification

$$m \equiv \frac{h_i}{h_o} = -\frac{x_i}{x_o}$$

m = Magnification

h<sub>i</sub> = image height

h<sub>o</sub> = object height

X<sub>i</sub> = image distance

 $X_o$  = object distance

# Positives and Negatives

| Positives                                 | Negatives                              |
|-------------------------------------------|----------------------------------------|
| Object distance in front of mirror        |                                        |
| Images distance in front of mirror (real) | Image distance behind mirror (virtual) |
| Upright magnification                     | Inverted magnification                 |

## Mirror Equation and Magnification Practice

You place an object 36cm in front of a concave mirror with a 16 cm focal length. Determine the image position.

- A 1.8m tall person stands 2.4 m in front of a curved mirror. Her image appears 0.36 m tall.
  - a. What is the images distance?
  - b. What is the focal length of the mirror?

## Mirror Equation and Magnification Practice

You place a 2.0 cm tall object in front of a concave mirror with a center of curvature of 20cm. What are the image position and the image height?