
Physics Honors: Circular Motion

Linear vs. Circular Motion

- So far this year, all the motion that we have talked about has been in a straight line.
- When objects are moving in a straight line, we call that **linear motion**
- When objects are moving in circles, we call that circular motion
- All the basic rules about how objects move are the same, but we need extra vocabulary to discuss how things move in a circle

Circular Motion Terms

- The point or line that is the center of the circle is the **axis of rotation**.
- If the axis of rotation is inside the object, the object is rotating (spinning)
- If the axis of rotation is outside the object, the object is **revolving.**

Period

The period (T) for an object is how many seconds it takes to complete one cycle of motion

$$\Gamma = \frac{time}{\# of cycles}$$

A runner completes 6 laps around a circular track in 360s. Find the period

Frequency

The frequency (f) for an object is the number of cycles that are completed in 1 second

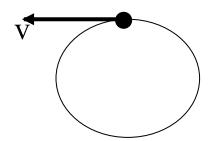
$$f = \frac{\# of \ cycles}{time}$$

A sewing machine makes 30 stitches in 10 seconds. What is the frequency?

Period and Frequency

 Period and frequency are inverses. So if we know period and want to know frequency, we can use this equation

$$T = \frac{1}{f}$$
$$f = \frac{1}{T}$$

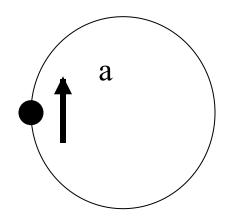

Or

Linear/Tangential Velocity

• Objects moving in a circle still have a linear velocity

linear velocity = distance time

• This is often called **tangential velocity**, since the direction of the linear velocity is tangent to the circle.



Centripetal Acceleration

- Acceleration is a vector, so it includes both magnitude and direction.
- As an object moves around a circle, the direction of motion is constantly changing.
- Therefore, an object moving in a circle is constantly accelerating.

Centripetal Acceleration

- The acceleration of an object moving in a circle points toward the center of the circle.
- This is called a centripetal (center pointing) acceleration.

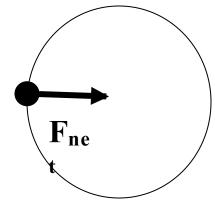
Centripetal Acceleration

The centripetal acceleration depends on:

- The linear speed of an object
- The radius of the circle

$$A_{cent} = \frac{v^2}{r}$$

- A_{cent} = Centripetal Acceleration
- V linear velocity
- r radius of circle


Centripetal Acceleration Practice

• What is the acceleration of an object that has a velocity of 25.0 m/s and is moving in a circle of radius 10.0 m?

- Newton's Second Law says that if an object is accelerating, there must be a net force on it.
- For an object moving in a circle, this is called the centripetal force.

• The centripetal force points toward the center of the circle.

- In order to make an object revolve about an axis, the net force on the object must pull it toward the center of the circle.
- This force is called a centripetal (center seeking) force.

- Centripetal force on an object depends on:
 - The object's mass
 - The object's speed
 - The object's distance from the axis (radius).

Newton's Second Law says that F=m*a for a straight line.

So, if we replace the acceleration with \mathbf{a}_{cent} , we can create the equation for \mathbf{F}_{cent} , the centripetal Force

$$F_{cent} = \frac{mv^2}{r}$$

Centripetal Force Practice

• What is the net force acting on a 5.0 kg object that has a velocity of 15 m/s and is moving in a circle of radius 1.5 m?

Centripetal Force Practice

1. What is the net force acting on a 52 kg object that has a velocity of 8.0 m/s and is moving in a circle of radius 1.6 m?

2. A 40.0 kg object is experiencing a net force of 240 N while traveling in a circle of radius 0.8 m. What is its velocity?