PHYSICS EQUATIONS – 2nd SEMESTER

TANGENTIAL VELOCITY	Tangential velocity = $\frac{2 \cdot pi \cdot radius \cdot (\#revs)}{time}$	$v_t = \frac{2\pi r(\#revs)}{t}$
CENTRIPETAL ACCELERATION	$a_c = \frac{velocity^2}{radius}$	$a_c = \frac{v^2}{r}$
CENTRIPETAL FORCE	(a) centripetal force = $mass \cdot centripetal acceleration$ (b) centripetal force = $mass \cdot velocity^2$ radius	(a) $F_c = ma_c$ (b) $F_c = \frac{mv_t^2}{r}$
TORQUE	Torque = Perpendicular Force \cdot Lever Arm Distance Balanced Torque = Force ₁ \cdot distance ₁ = Force ₂ \cdot distance ₂	$T = \mathbf{F} \cdot \mathbf{d}$ $\mathbf{F}_1 \cdot \mathbf{d}_1 = \mathbf{F}_2 \cdot \mathbf{d}_2$
ROTATIONAL INERTIA	Hoop and Pendulum Solid Cylinder Solid Sphere Stick about End Stick about CG	$I = mr^{2}$ $I = 1/2 mr^{2}$ $I = 2/5 mr^{2}$ $I = 1/3 mr^{2}$ $I = 1/12 mr^{2}$
ANGULAR MOMENTUM	Angular Momentum = mass · tangential velocity · radius	$L = m \cdot v_t \cdot r$
UNIVERSAL GRAVITATION	Force of Gravity = $\frac{\text{Gravity constant} \cdot \text{mass}_1 \cdot \text{mass}_2}{\text{distance}^2}$ $G = 6.67 \times 10^{-11} \text{ N-m}^2/\text{kg}^2$ $r_{\text{earth}} = 6.38 \times 10^6 \text{ m}$ $m_{\text{earth}} = 5.98 \times 10^{24} \text{ kg}$	$F_{g} = \frac{Gm_{1}m_{2}}{d^{2}}$
ACCELERATION OF GRAVITY	Acceleration of Gravity = Gravity constant · mass radius ²	$a_{g} = \frac{G m}{r^{2}}$
TANGENTIAL VELOCITY	Tangential Velocity = Square root of Gravity constant · mass radius mass – orbit center. radius - orbit	$V_t = \sqrt{\underline{G} \ \underline{m}}$
COULOMB'S LAW	Electrical Force = $\frac{\text{constant} \cdot \text{charge}_1 \cdot \text{charge}_2}{\text{distance}^2}$ $k = 9.0 \times 10^9 \text{ N-m}^2/\text{C}^2$	$F_e = \frac{kq_1q_2}{d^2}$
POTENTIAL DIFFERENCE	Potential Difference = Potential Energy ÷ charge Electron Charge = -1.6 x 10 ⁻¹⁹ C Proton Charge = 1.6 x 10 ⁻¹⁹ C Mass = 9.11 x 10 ⁻³¹ kg Mass = 1.67 x 10 ⁻²⁷ kg	V = PE/q
ELECRIC CURRENT	Electric Current = charge ÷ time	I = q/t

OHM'S LAW	Electric Current = Voltage ÷ Resistance	I = V/R
ELECTRIC POWER	Electric Power = Current · Voltage	P = IV
ELECTRICAL ENERGY	Electric Energy = Power · time	E = Pt
ELECTRICAL COST	Cost = Energy · rate per kilowatt-hour	= $E \cdot rate$
SERIES CIRCUITS	Resistance $_{total}$ = Resistance $_1$ + Resistance $_2$ Voltage $_{total}$ = Volts $_1$ + Volts $_2$ + Volts $_3$	$R_T = R_1 + R_2 + R_3 \dots$ $V_T = V_1 + V_2 + V_3 \dots$ (I constant)
PARALLEL CIRCUITS	1/Resistance total = 1/Resistance ₁ + 1/Resistance ₂ Current total = Current ₁ + Current ₂ + Current ₃	$\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2}$ $I_T = I_1 + I_2 + I_3 \text{ (V constant)}$
MAGNETIC FORCE	Magnetic Force = charge · velocity · magnetic field Magnetic Force = current · length · magnetic field	$F_{B} = q \cdot v \cdot B$ $F_{B} = I \cdot L \cdot B$
FREQUENCY & PERIOD	frequency = 1 ÷ Period Period = 1 ÷ frequency	f = 1/T $T = 1/f$
PER. OF A PENDULUM	Period = $2 \cdot \text{pie} \cdot \text{square root of length} \div \text{gravity}$	$T_p = 2\pi \sqrt{L/g}$
VELOCITY OF A WAVE	Velocity = frequency · wavelength	$v=f\lambda$
SPEED OF SOUND IN AIR	$V_{air} = 331 \text{ m/s} + (0.6 \text{ m/s}) \cdot \text{Temperature in Celsius}$	$V_{air} = 331 \text{ m/s} + (0.6 \text{ m/s})T_{c}$
ENERGY OF LIGHT	Photon Energy = Planck's Constant · frequency Photon Energy = Planck's Constant · speed of light Wavelength h = 6.63 x 10 ⁻³⁴ J-S	$E = h \cdot f$ $E = \frac{h \cdot c}{\lambda}$
LAW OF REFLECTION	angle of incidence = angle of reflection	$\theta_{i} = \theta_{r}$
LAW OF REFRACTION	index of refraction ₁ · sine angle ₁ = index of refraction ₂ · sine angle ₂ $n = \underbrace{v_{\text{(air)}}}_{\text{V (medium)}}$	$n_1 \sin \theta_1 = n_2 \sin \theta_2$
LENS EQUATIONS	1/ focal length = 1/object distance + 1/image distance Magnification = - image distance ÷ object distance	$\frac{1}{f} = \frac{1}{d_o} + \frac{1}{d_i}$ $M = -\underline{d_i}$ d_o