PHYSICS EQUATIONS – 1st SEMESTER

VELOCITY	velocity = final <u>distance</u> – initial distance time	$v = \Delta \underline{d} \atop t$
ACCELERATION	acceleration = <u>final velocity</u> – <u>initial velocity</u> time	$a = \frac{V_f - V_i}{t}$
GRAVITATIONAL ACCELERATION	velocity = acceleration · time	$v_y = at$
	distance = $\frac{1}{2}$ acceleration · time ²	$d_y = \frac{1}{2}at^2$
PYTHAGOREAN THEOREM	The square on the hypotenuse is equal to the sum of the squares on the other two sides.	$c^2 = a^2 + b^2$
NET FORCE	Net Force = mass · acceleration	$F_{Net} = ma$
WEIGHT	Weight = mass · acceleration due to gravity	W = mg
SLIDING FRICTION	friction force = coefficient of friction · normal force	$F_f = \mu F_n$
MOMENTUM	momentum = mass · velocity	p = mv
IMPULSE	Impulse = force · time = change in momentum	$J \ = \ Ft \ = \ m\Delta v = \Delta p$
	Sum momentum before = Sum momentum after	$\Sigma p_{ m before} = \Sigma p_{ m after}$
CONSERVATION OF MOMENTUM	$m_1v_1 + m_2v_2 = m_1v'_1 + m_2v'_2$	Elastic collisions
	$m_1v_1 + m_2v_2 = (m_1 + m_2)v'$	Inelastic collisions
WORK	Work = force · distance	$W = F \cdot d$
POWER	power = <u>work</u> time	$P = \frac{W}{t}$
POTENTIAL ENERGY	potential energy = mass · gravity · height	P.E. = mgh
KINETIC ENERGY	kinetic energy = ½ mass ⋅ velocity ²	K.E. = ½mv ²
CONSERVATION OF MECHANICAL ENERGY	$Energy_{before} = Energy_{after}$	$\Sigma E_b = \Sigma E_a$
	$\begin{array}{lcl} Kinetic \; Energy_1 + Potential \; Energy_1 + \; Work & = \; Kinetic \; Energy_2 + \\ & Potential \; Energy_2 \end{array}$	$KE_1 + PE_1 + W = KE_2 + PE_2$