Quiz/Question of the Day

Define:

Position

Speed

Acceleration

Physics Chapter 1

Question/Quiz of the Day

A ______ is a possible explanation for why things are the way they are.
What are the SI (metric) units for:
Length
Mass
Time
Express 6,000,000 in scientific notation.

Numbers and Measurement

- Scientists have a convention for writing numbers that show the uncertainty of the measurement.
- Only significant digits are reported for measured and calculated numbers.
- 0.011
- 1.002
- 1.00
- 0.0025
- 0.00250

Arithmetic with Sig Figs

Addition and subtraction:

Multiplication and division:

Other operations:

SI Units

- SI, system international
- Quantity, unit name, symbol
- Length,
- Mass,
- Time,
- Electrical charge,
- Combinations are called
- Examples:

SI (metric) prefixes

Prefix	Symbol	Factor
	M	
	k	
	h	
	da	
Base unit		1
	d	
	С	
	m	
	μ	
	n	

Converting units

- If 12 in = 1.0 ft then
- How many inches are in 6.2 ft?

• How many in³ are in 6.2 ft³?

How many µs are in 6.2ms?

• If I weigh three nails and their weights are 6.68g, 6.72g, and 6.67g, what is the

Question of the day.

If 3.0 ft = 1 yd, the how many yd 3 are 4000ft 3 ?

Sig fig and conversion problem

If I weigh three nails and their weights are 6.68g, 6.72g, and 6.67g, what is the average weight of a nail in lbs (1.0000lb = 453.59g)?

Strategies to increase certainty

- Take multiple measurements and use the average.
- Use a sample that is large compared to your measurement scale.
- Round only after all calculations are done.
- Precision vs. Accuracy?

Classical Realism, and the Scientific method

Chapter 1 Review problems

- Page 27...
- #'s 2, 5, 10, 11, 13, 16, 20, 27, 45

Chapter 2. One dimensional motion.

- Position and displacement.
- x and Δx , both in meters, feet, etc
- Distance vs. displacement.
- Defined wrt coordinate system.

•
$$\Delta x = x_f - x_i$$

Velocity and Speed

- V, velocity
- V_{average} = _____, measured in
- Because displacement has a direction....
- Speed has size but not specified direction.
- (vector vs scalar quantities)
- In a graph of position vs. time speed is of the graph.

Question of The Day

What does ∆ mean?

What does ∆x mean?

Constant velocity problems.

 A bacteria swim at 3.5mm/s across a 84mm petri dish. How much time will it take?

At 35mi/hr, how far can you travel in 6.5hrs?

 If you are at mile marker 60 at 3:00 am and at mile marker 390 at 12 noon, what is your average speed?

Acceleration

- Acceleration, a
- a_{average} =
- Units:
- Since Δv is vector, so is a vector.
- A bus slows from 9m/s to 0m/s over the course of 5s. What is its acceleration?

Acceleration can be positive or negative

Questions of the Day.

 "Negative acceleration" can have two possible meanings. What are they?

 What is the significance of the slope of a position vs. time graph (an x(t) graph)?

Acceleration problems

 A bus moving at 12m/s accelerates at -3m/s². How long until it stops?

 If you wish for a bus to stop in 9 s from a speed of 14m/s, how fast should it accelerate?

Chapter 2 Review Problems

Page 69...1-6, 9, 10, 16, 19, 22, 25, 28, 29, 32, 50, 55, 60, 65

Constant acceleration eqns

- Start with $V_{average} = \Delta x/\Delta t$
- At constant acceleration, $v_{average} = (v_f + v_i)/2$
- Substituting gives:

Multiply by Δt gives:

$$\Delta x = 1/2(v_f+v_i) \Delta t$$

 A car moving at 20 m/s brakes to zero over 6 seconds, how far does it travel?

 If the car has only 20m to stop, how much time does it have?

Constant acceleration equations

- $a = (v_f v_i)/\Delta t$
- $(v_f-v_i) = a \Delta t$
- $v_f = v_i + a \Delta t$
- If a car going 4m/s accelerates over the next 6 seconds at 2m/s². What is its final speed?

Constant acceleration eqns

- $v_f = v_i + a \Delta t$
- $\Delta x = 1/2(v_f+v_i) \Delta t$ substitute the above for v_f

- $\Delta x = v_i \Delta t + \frac{1}{2} a (\Delta t)^2$
- If an object moving at 0.0 m/s begins to fall toward the earth at 9.8m/s², how far will it fall in 3.0 seconds?

(constant acceleration)

• $\Delta x = 1/2(v_f+v_i) \Delta t$ solve for Δt :

• Subst. into $v_f - v_i = a \Delta t$

• $v_f^2 = v_i^2 + 2a\Delta x$

$$v_f^2 = v_i^2 + 2a\Delta x$$

• An object falls from rest from the height of a table, 0.75 meters. Acceleration due to gravity is 9.8m/s². How fast is the object falling when it hits the ground?

Question(s) of the day

What is the significance of the slope of a "velocity as a function of time" or v(t) plot?

Free Falling objects

- a = 9.8m/s² (with no friction, no air resistance)
- Our class average with friction and air resistance was 9.4m/s².
- A ball is thrown upward at 7m/s. How high will it go? And when will it hit the ground again? How fast will it be going when it hits the ground?

Free Fall

 A ball is thrown upward at 7m/s from a 20m building. How high will it go? When will it hit the ground? How fast will it be moving when it hits the ground?