Subject: Physics	Timeframe Needed for Completion: 2 weeks		
Grade Level: 11,12			
Unit Title: Unit 6 : Energy, Work, Power	Grading Period: 2 nd 9wks		
New 2009 goals are in red			
Big Idea/Theme: Relationship between energy, work , power			
Understandings: Students will understand that work is the p	roduct of force through a distance.		
Students will understand power is the rate a	at which work is done.		
Students will understand the differences between potential and kinetic energy.			
Students will understand the "Law of conservation of Energy".			
Students will develop an understanding of e	Curriculum Cools/Objectives (to be accessed at the and of the unit/guerter)		
Essential Questions: What does the word work mean to you?	2.1.1 Interpret data on work and energy presented graphically and		
What does the word work mean to you: What forms of energy can you identify in the classroom?	2.1.1 Interpret data on work and energy presented graphically and		
If something is moving is work being done?	numericany.		
How does energy cause change, and what kinds of changes	• Identify work as the transfer of energy by a force acting through a distance		
occur?	when that force acts in the direction of motion of the object,		
	• Interpret a graph of force vs. distance for the displacement of an object by a		
	constant force; the area under the graph is equal to the work		
	done by the force on the object; work is a scalar quantity.		
	• Explain the work-energy relationship involving		
	work done in lifting an object vertically to the change in gravitational		
	potential energy, . work dong in setting on object in motion to the change in kinetic energy		
	work done in stretching or compressing a spring to the change in elastic		
	notential energy.		
	2.1.2 Compare the concepts of potential and kinetic energy and conservation		
	of total mechanical energy in the description of the motion of objects.		
	• Compare conceptually and mathematically situations involving potential-		
	kinetic energy transformations (pendulum, falling object, roller		
	coaster, inclined plane, block-spring system) indicating the amount of energy at		
	various locations.		
	• Summarize the concept of energy conservation - energy can be stored and transformed, but connect he created or destroyed		
	• Conclude that in all situations, energy tends to dissipate throughout the		
	environment generally due to friction resulting in heat transfer		

• Develop the concept of energy as the ability to cause change. • Describe energy transfer and storage in different physical systems, including but not limited to those involving gravitational potential energy, elastic potential energy, thermal energy, and kinetic energy. • Apply proportional reasoning to the relationship between an object's kinetic energy and the object's mass and velocity according to the equation: • Analyze changes in gravitational potential energy when an object's mass and/or height change: $PE_g = mgh$ • Apply proportional reasoning to the relationship between a spring's potential energy and its deformation, $PE_s = \frac{1}{2}kx^2$ • Show that PE_s = area under a graph of Force vs. deformation (stretch or compression), where $F = -kx$. The spring constant k is equal to the slope of the graph and is called the elastic constant. • Analyze concentually that thermal energy increases
 Develop the concept of energy as the ability to cause change. Describe energy transfer and storage in different physical systems, including but not limited to those involving gravitational potential energy, elastic potential energy, thermal energy, and kinetic energy. Apply proportional reasoning to the relationship between an object's kinetic energy and the object's mass and/or height change: PE_g = 1/2 kx² Show that PE_s = area under a graph of Force vs. deformation (stretch or compression), where F = -kx. The spring constant k is equal to the slope of the graph and is called the elastic constant. Analyze constant k is equal to the slope of the graph and is called the elastic constant. Analyze constant k is equal to the slope of the graph and is called the elastic constant. Analyze constant k is equal to the slope of the graph and is called the elastic constant. Analyze constant k is equal to the slope of the graph and is called the elastic constant. Analyze constant k is equal to the slope of the graph and is called the elastic constant. Lab on Energy Lab on Work and Power (stadium steps and stopwatches) http://www.ncpublicschools.org/curriculum/science/scos/2004/27physics (FOR SUPPLIES NEEDED TO ACCOMPANY THE BELOW "INQUIRY SUPPORT LABS") • Inquiry Support Lab: Spring Energy Activities • Inquiry Support Lab: Spring Energy Activities
change. • Describe energy transfer and storage in different physical systems, including but not limited to those involving gravitational potential energy, elastic potential energy, thermal energy, and kinetic energy. • Apply proportional reasoning to the relationship between an object's kinetic energy and the object's mass and velocity according to the equation: • $KE = \frac{1}{2}mv^2$ • Analyze changes in gravitational potential energy when an object's mass and/or height change: $PE_g = mgh$ • Apply proportional reasoning to the relationship between a spring's potential energy and its deformation, x, according to the equation: • $PE_s = \frac{1}{2}kx^2$ • Show that PE_s = area under a graph of Force vs. deformation (stretch or compression), where $F = -kx$. The spring constant k is equal to the slope of the graph and is called the elastic constant. • Analyze concentually that thermal energy increases
 Describe energy transfer and storage in different physical systems, including but not limited to those involving gravitational potential energy, elastic potential energy, thermal energy, and kinetic energy. Apply proportional reasoning to the relationship between an object's kinetic energy and the object's mass and velocity according to the equation: KE = ¹/₂ mv² Analyze changes in gravitational potential energy when an object's mass and/or height change: PE_g = mgh Apply proportional reasoning to the relationship between a spring's potential energy and its deformation, x, according to the equation: PE_g = ¹/₂ kx² Show that PE_s = area under a graph of Force vs. deformation (stretch or compression), where F = -kx. The spring constant k is equal to the slope of the graph and is called the elastic constant. Analyze concentually that thermal energy increases
"INQUIRY SUPPORT LABS") • Apply proportional reasoning to the relationship between an object's kinetic energy and the object's mass and velocity according to the equation: $KE = \frac{1}{2}mv^2$ • Analyze changes in gravitational potential energy when an object's mass and/or height change: $PE_g = mgh$ • Apply proportional reasoning to the relationship between a spring's potential energy and its deformation, $RE_s = \frac{1}{2}kx^2$ • Show that $PE_s = area under a graph of Force vs. deformation (stretch or compression), where F = -kx.The spring constant k is equal to the slope of the graphand is called the elastic constant.$
 energy, thermal energy, and kinetic energy. Apply proportional reasoning to the relationship between an object's kinetic energy and the object's mass and velocity according to the equation: KE = ¹/₂ mv² Analyze changes in gravitational potential energy when an object's mass and/or height change: PE_g = mgh Apply proportional reasoning to the relationship between a spring's potential energy and its deformation, <i>PE_g</i> = ¹/₂ kx² x, according to the equation: Bhow that PE_s = area under a graph of Force vs. deformation (stretch or compression), where <i>F</i> = -kx. The spring constant k is equal to the slope of the graph and is called the elastic constant. Analyze concentually that thermal energy increases
 Apply proportional reasoning to the relationship between an object's kinetic energy and the object's mass and velocity according to the equation: KE = ¹/₂ mv² Analyze changes in gravitational potential energy when an object's mass and/or height change: PE_g = mgh Apply proportional reasoning to the relationship between a spring's potential energy and its deformation, PE_s = ¹/₂ kx² Show that PE_s = area under a graph of Force vs. deformation (stretch or compression), where F = -kx. The spring constant k is equal to the slope of the graph and is called the elastic constant.
between an object's kinetic energy and the object's mass and velocity according to the equation: $KE = \frac{1}{2}mv^2$ • Analyze changes in gravitational potential energy when an object's mass and/or height change: $PE_g = mgh$ • Apply proportional reasoning to the relationship between a spring's potential energy and its deformation, $PE_s = \frac{1}{2}kx^2$ x, according to the equation: $PE_s = \frac{1}{2}kx^2$ • Show that PE_s = area under a graph of Force vs. deformation (stretch or compression), where $F = -kx$. The spring constant k is equal to the slope of the graph and is called the elastic constant. • Analyze concentually that thermal energy increases
and velocity according to the equation: $KE = \frac{1}{2}mv^2$ • Analyze changes in gravitational potential energy when an object's mass and/or height change: $PE_g = mgh$ • Apply proportional reasoning to the relationship between a spring's potential energy and its deformation, $EE_s = \frac{1}{2}kx^2$ x, according to the equation: $PE_s = \frac{1}{2}kx^2$ Show that PE_s = area under a graph of Force vs. deformation (stretch or compression), where $F = -kx$. The spring constant k is equal to the slope of the graph and is called the elastic constant.
 Analyze changes in gravitational potential energy when an object's mass and/or height change: PE_g = mgh Apply proportional reasoning to the relationship between a spring's potential energy and its deformation, PE_s = ¹/₂ kx² x, according to the equation: PE_s = ¹/₂ kx² Show that PE_s = area under a graph of Force vs. deformation (stretch or compression), where F = -kx. The spring constant k is equal to the slope of the graph and is called the elastic constant.
 an object's mass and/or height change: PE_g = mgh Apply proportional reasoning to the relationship between a spring's potential energy and its deformation, PE_s = 1/2 kx² x, according to the equation: PE_s = 1/2 kx² Show that PE_s = area under a graph of Force vs. deformation (stretch or compression), where F = -kx. The spring constant k is equal to the slope of the graph and is called the elastic constant. Analyze concentually that thermal energy increases
 Apply proportional reasoning to the relationship between a spring's potential energy and its deformation, PE_s = ¹/₂ kx² x, according to the equation: PE_s = area under a graph of Force vs. deformation (stretch or compression), where F = -kx. The spring constant k is equal to the slope of the graph and is called the elastic constant. Analyze concentually that thermal energy increases
 between a spring's potential energy and its deformation, PE_s = ¹/₂ kx² x, according to the equation: PE_s = area under a graph of Force vs. deformation (stretch or compression), where F = -kx. The spring constant k is equal to the slope of the graph and is called the elastic constant. Analyze conceptually that thermal energy increases
$PE_{s} = \frac{1}{2}kx^{2}$ • Show that PE _s = area under a graph of Force vs. deformation (stretch or compression), where $F = -kx$. The spring constant k is equal to the slope of the graph and is called the elastic constant. • Analyze concentually that thermal energy increases
 Show that PE_s = area under a graph of Force vs. deformation (stretch or compression), where F = -kx. The spring constant k is equal to the slope of the graph and is called the elastic constant. Analyze concentually that thermal energy increases
 deformation (stretch or compression), where F = -kx. The spring constant k is equal to the slope of the graph and is called the elastic constant. Analyze conceptually that thermal energy increases
The spring constant k is equal to the slope of the graph and is called the elastic constant. • Analyze conceptually that thermal energy increases
 and is called the elastic constant. Analyze concentually that thermal energy increases
• A DAD/ZE CODCEDUTATIV TOAT THEFTMAL ENERGY THEFTEASES
when an object's temperature increases.
 Express an understanding of the conservation of energy
in words as well as charts, diagrams and graphs.
• Identify work as the transfer of energy by a force acting
through a distance, when that force acts in the direction $M = F \Delta x$
of motion of the object: $v = r \Delta \Delta$

vs. distance graph.

- Define power as the rate of transferring energy or the rate of doing work.
- Use the power equation to solve mathematical problems involving transfer of energy through work:

$$P = \frac{W}{\Delta t} = F \overline{v}$$

Recognize that a force must cause displacement in order

for

work to be done.

- Verify through investigations the conservation of energy in situations involving transfer of energy among kinetic energy, elastic potential energy and gravitational potential energy.
- Develop the concept of energy as the ability to cause change.
- Describe energy transfer and storage in different physical systems, including but not limited to those involving gravitational potential energy, elastic potential energy, thermal energy, and kinetic energy.
- Apply proportional reasoning to the relationship between an object's kinetic energy and the object's mass

 $KE = \frac{1}{2}mv^2$

and velocity according to the equation:

- Analyze changes in gravitational potential energy when an object's mass and/or height change: $PE_g = mgh$
- Apply proportional reasoning to the relationship between a spring's potential energy and its deformation,

x, according to the equation: $PE_s = \frac{1}{2}kx^2$

- Show that PE_s = area under a graph of Force vs. deformation (stretch or compression), where F = -kx. The spring constant k is equal to the slope of the graph and is called the elastic constant.
- Analyze conceptually that thermal energy increases when an object's temperature increases.
- Apply the idea that energy can be transferred when objects interact. (See work under 6.02)

- Express and apply the idea that in all situations, energy tends to dissipate throughout the environment.
- Express the concept of energy conservation by applying the idea that energy can be stored and transferred, but cannot be created or destroyed.
- Express an understanding of the conservation of energy in words as well as charts, diagrams and graphs. Use conceptual analysis and mathematical formulas for energy to determine amounts of energy stored as kinetic energy, elastic potential energy, gravitational potential energy, and amounts of energy transferred through work.
- Analyze and investigate the relationship among kinetic, potential, and other forms of energy to see that total energy is conserved. (pendulum in various positions, ball in flight, stretching a rubber band, hand generator, turbine)
- Solve problems relating the amounts of energy stored and transferred applying the principle of conservation of energy. Identify work as the transfer of energy by a force acting through a distance, when that force acts in the direction of motion of the object: $W = F \Delta x$
- Recognize that work is equal to the area under a force vs. distance graph.
- Define power as the rate of transferring energy or the rate of doing work.
- Use the power equation to solve mathematical problems involving transfer of energy through work:

$$P = \frac{W}{\Delta t} = F \overline{v}$$

- Recognize that a force must cause displacement in order for work to be done.
- Verify through investigations the conservation of energy in situations involving transfer of energy among kinetic energy, elastic potential energy and gravitational potential energy.

Investigate power.

Materials Suggestions:	
Stadium stairs	
Stopwatches	
Spring balances	
Varoius weights	
Meter sticks	
Dynamics cart (very low friction)	
String	
Spring	
CBL or MBL motion detector or photogate	
• •	

http://www.ncpublicschools.org/curriculum/science/scos/2004/27physics (FOR SUPPLIES NEEDED TO ACCOMPANY THE ABOVE "INQUIRY SUPPORT LABS")

21 st Century Skills	Activity
Communication Skills	
Conveying thought or opinions effectively	 Analysis questions in all labs
When presenting information, distinguishing between relevant and irrelevant information	 Data collection in all Lab Activities
Explaining a concept to others	Sign Off—Energy labStadium Steps lab
Interviewing others or being interviewed	Sign Off— Energy labStadium Steps lab

Computer Knowledge	
Using word-processing and	 Making graphs in labs
database programs	
Developing visual aides for	Free Body Diagrams
presentations	Activities
Using a computer for	Free Body Diagrams
communication	Activities
Learning new software programs	Momentum Website
Employability Skills	
Assuming responsibility for own	 Free Body Diagrams
learning	 Sign Off –Spring Energy
Persisting until job is completed	
Working independently	 Spring Energy Activity
Developing career interest/goals	
Responding to criticism or	 Sign Off — Energy lab
questions	 Stadium Steps lab
Information-retrieval Skills	
Searching for information via the	Spring Energy Activity
computer	
Searching for print information	Spring Energy Activity
Searching for information using	 Stadium Stairs
community members	
Language Skills - Reading	
Following written directions	Most of the activities can be
	presented as opportunities for
	students to follow written
	directions. The teacher will
	have to work with most students
	to develop this skill over time.
Identifying cause and effect	Catapult
Summarizing main points after	
Locating and choosing	
appropriate reference materials	All lab activities
Reading for personal learning	
Language Skill - Writing	
Language Okin - Winting	

Using language accurately	
Organizing and relating ideas when writing	 "Explain" and "Evaluate" sections in all lab activities
Proofing and Editing	
Synthesizing information from several sources	Free Body ActivitiesSign Off Activity
Documenting sources	
Developing an outline	
Writing to persuade or justify a position	Sign Off Activity
Creating memos, letters, other forms of correspondence	
Teamwork	
Taking initiative	All lab activitiesSign Off Activity
Working on a team	All lab activitiesSign Off Activity
Thinking/Problem-Solving Skills	
Identifying key problems or questions	All lab activitiesSign Off Activity
Evaluating results	 All lab activities Sign Off Activity
Developing strategies to address problems	
Developing an action plan or timeline	