Subject: Physics	Timeframe Needed for Completion: 2 Weeks	
Grade Level: 11,12		
Unit Title: Unit 3: Motion in Two Dimensions	Grading Period: 1 st 9wks	
New 2009 objectives are in red		
Big Idea/Theme: Motion in two dimensions: projectile, centri		
Understandings: Students will understand how to solve mathe		
Students will understand centripetal force an	ia now it related to circular motion.	
Projectile Motion	sition for projectile motion	
 Identify a frame of reference for measurement of pos 		
 Analyze and evaluate the position, velocity and acce motion. 	leration in horizontal and vertical frames of reference for projectile	
	tion developed in Unit One to solve conceptual and quantitative	
problems for projectile motion in both horizontal and	vertical reference frames.	
 Describe the path of a projectile as parabolic. 		
Describe the effects of changing launch speed and la		
) that velocity is constant. $v_x = (v_{launch})(\cos \theta_{launch})$ $a_x = 0 \text{ m/s}^2$ $x_f = x_i$	
+ $v\Delta t$ (note that θ is measured from the x axis)		
	hat velocity changes and acceleration is that of gravity. $a_y = g = -9.8$	
	$y_f = y_i + v_i \Delta t + \frac{1}{2} g \Delta t^2$ $v_f^2 = v_i^2 + 2g \Delta y$ (note that θ is measured	
from the x axis)		
Uniform Circular Motion		
 Define uniform circular motion, incorporating magnitude 		
 Apply the concept of vectors to observe acceleration for an object traveling at constant speed in a circular path. 		
 Distinguish between speed and velocity for an object in uniform circular motion. 		
Application of Graphical and Mathematical Tools		
Projectile Motion—Horizontal Motion:		
 Measure horizontal position versus time of an object moving in a trajectory. 		
 Sketch a position versus time graph of the projectile path for both horizontal motion of a projectile. 		
 Recognize that the relationship is linear for horizonta 	Il motion.	
	n over time (velocity) and the y-intercept as the initial position for the	
	me for horizontal motion is constant and thus velocity is constant.	

• Recognize that a constant velocity means that acceleration for horizontal motion is zero!

Projectile Motion—Vertical Motion:

- Measure vertical position versus time of an object moving in a trajectory.
- Sketch a position versus time graph of the projectile path for vertical motion of a projectile.
- Recognize that the relationship for position versus time is parabolic for vertical motion.

- Identify the slope of the line as the change in position over time (velocity) and the y-intercept as the initial position for the given time interval. Note that the slope of position, time for horizontal motion is not constant and thus velocity is not constant.
- Recognize that a parabolic position versus time graph means that acceleration is constant for vertical motion!

$$x_{f} = x_{i} + v_{i}t + \frac{1}{2}at^{2} \qquad a = \frac{\Delta v}{\Delta t}$$
$$v_{f}^{2} = v_{i}^{2} + 2a\Delta x \qquad \text{where } a = g$$

Essential	Questions:	Curriculum Goals/Objectives (to be assessed at the end of the unit/quarter)
1.	Compare and contrast the processes of vector resolution and vector addition.	1.1.3 Analyze motion in two dimensions using angle of trajectory, time, distance, displacement, velocity, and acceleration.
2.	How do the vertical and horizontal components of a projectile's velocity change?	 Analyze projectile motion to: determine that horizontal and vertical components are independent of each other;
3.	How can the trajectory of a projectile be predicted?	• determine that the horizontal component of velocity does not change (neglecting air resistance) and the vertical component of velocity changes due to gravity;
4.	How do linear and projectile motion relate to each other? How are they different?	• determine that for a projectile launched from the ground at an angle, the vertical component of velocity at the maximum height has a value of zero while the horizontal component remains constant;
5.	How can an object moving at constant speed experience an acceleration?	• resolve vectors into vertical and horizontal components using trigonometric relationships.
6.	How do you evaluate the centripetal acceleration of an object?	• apply conceptual and mathematical relationships for uniform velocity for the horizontal component of velocity and range (horizontal displacement);
7.	How is a force applied to create circular motion?	• apply conceptual and mathematical relationships for uniform acceleration with the vertical component of velocity and height (vertical displacement).
8.	How do mass, velocity, and radius relate to centripetal force?	 Analyze circular motion to: determine that an object may move with constant speed but changing velocity;
9.	Why is centrifugal force a fictitious quantity in physics?	• determine that the directions of velocity and acceleration vectors are perpendicular to each other;
10.	How would you design a lab to measure the relationships between mass, velocity, radius, and	• determine the relationship between acceleration and velocity (squared), and between acceleration and radius of curvature (inverse),
4.4	centripetal force?	• Solve problems involving motion of planes and boats due to winds or river currents using vector addition.
11.	How does our military use projectile motion?	1.2.5 Analyze basic forces related to rotation in a circular path (centripetal force).
12.	How could you use dot diagrams to show the motion of a diver	
		• Recognize the cause and effect relationship between centripetal force and the change in

13. 14.	competing in the Olympics? What physics is involved when a football player kicks a football down field? How is your body affected when riding a roller coaster?	 velocity due to change in direction (centripetal acceleration) of an object as an example of Newton's second law, ; Recognize that a centripetal force is <i>not</i> the result of circular motion but is provided by interaction with another object
 F C E h Recogni does cha downwa F iii F v h 	Al Skills/Vocabulary: Resolve vectors into vertical and horizontal components: $a^{2} + b^{2} = c^{2}$ $a^{2} + b^{2} = c^{2}$ $\sin \theta = \frac{a}{c}$ $\cos \theta = \frac{b}{c}$ $\tan \theta = \frac{a}{b}$ Evaluate the motion of a projectile both norizontally and vertically. \circ Recognize that the horizontal component of velocity does not change (neglecting air resistance). ze that the vertical component of velocity unge due to gravity at the rate of 9.8m/s ² rd Recognize that vector components are ndependent of each other. Relate height, time in air and initial vertical velocity (such as a projectile launched norizontally or from the ground at a given ingle).	Assessment Tasks: http://www.ncpublicschools.org/docs/curriculum/science/units/high/physics/unit2.doc Major Test, Quizzes, homework Lab on projectile motion: (competition activity to land ball in cup) Lab on Centripetal Force Computer Activity on Forces

- Relate range of projectile, time and initial horizontal velocity (such as a projectile launched horizontally or from the ground at a given angle).
- Understand that for uniform circular motion the net force is called the centripetal force.
- Understand that the centripetal force is not the result of circular motion but must be provided by an interaction with an external source.
- Apply the formula for centripetal force as mass times centripetal acceleration using the following equations:

$$a_c = \frac{v^2}{r}$$

.

$$F_c = \frac{mv^2}{r}$$

Materials Suggestions: <u>http://www.ncpublicschools.org/docs/curriculum/science/units/high/physics/unit2.doc</u> CHECK THIS FOR ADDITIONAL RESOURCES)

Vernier Equipment Large marbles, weights Meter sticks String Compasses Rulers Blank paper Protractors Measuring tape Golf balls/marbles Rulers with troughs (to be used as ramps Stopwatches Small boxes or soup cans Toy dart guns Small blocks of wood Masking tape Duct tape

Photogates and LabPros (optional) Soccer balls Rubber stoppers Small hollow tubes (6-10 cm) Dental floss (or other strong string) washers

21 st Century Skills	Activity
Communication Skills	
Conveying thought or opinions effectively	 Questions in all Laboratory Activities
When presenting information, distinguishing between relevant and irrelevant information	 Data collection in all Lab Activities
Explaining a concept to others	 Projectiles at an Angle
Interviewing others or being interviewed	
Computer Knowledge	
Using word-processing and database programs	Circular Motion
Developing visual aides for presentations	Circular Motion
Using a computer for communication	 Investigation of Projectile Motion
Learning new software programs	 Investigation of Projectile Motion
Employability Skills	
Assuming responsibility for own learning	Circular Motion
Persisting until job is completed	Exploring Projectiles
Working independently	Vector Treasure Hunt
Developing career interest/goals	

Deserve dia a terraticiana en	
Responding to criticism or	Questions in all Lab
questions	Activities
Information-retrieval Skills	
Searching for information via the computer	 Investigation of Projectile Motion
Searching for print information	
Searching for information using community members	
Language Skills - Reading	
Following written directions	Most of the activities can be presented as opportunities for students to follow written directions. The teacher will have to work with most students to develop this skill over time.
Identifying cause and effect relationships	 "Explain" and "Evaluate" in all lab activities
Summarizing main points after reading	Exploring Projectiles
Locating and choosing appropriate reference materials	 Investigation of Projectile Motion
Reading for personal learning	
Language Skill - Writing	
Using language accurately	
Organizing and relating ideas when writing	 "Explain" and "Evaluate" in all lab activities
Proofing and Editing	 "Evaluate" in all lab activities
Synthesizing information from several sources	 "Explain" and "Evaluate" in all lab activities
Documenting sources	
Developing an outline	
Writing to persuade or justify a position	 "Evaluate" in all lab activities
Creating memos, letters, other forms of correspondence	
Teamwork	

Taking initiative	All Lab Activities
Working on a team	All Lab Activities
Thinking/Problem-Solving Skills	
Identifying key problems or questions	All Lab Activities
Evaluating results	All Lab Activities