

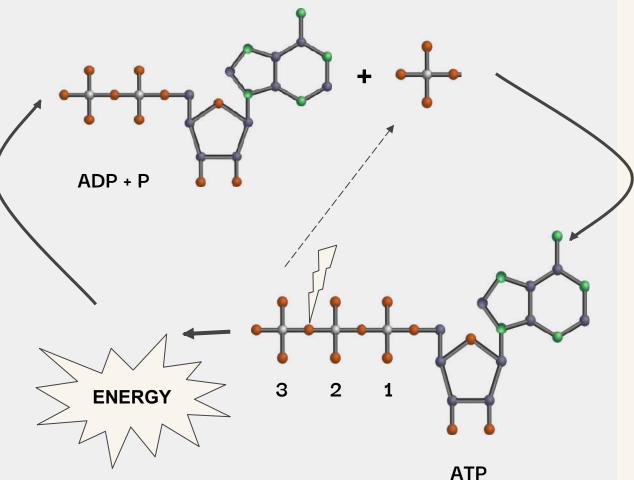
Cellular Energy

- Understand that cellular energy is temporarily stored in the nucleotide ATP (adenosine triphosphate)
- Describe how energy is released by ATP

Photosynthesis

- Know that autotrophs or producers use sunlight to make their own food through the process of photosynthesis
- Identify the reactants \mathcal{E} products in photosynthesis as CO_2 and H_2O + energy
- *Explain the energy conversions in a cell during photosynthesis; light energy is converted to chemical energy*

Cellular Energy - ATP


All organisms require energy for:

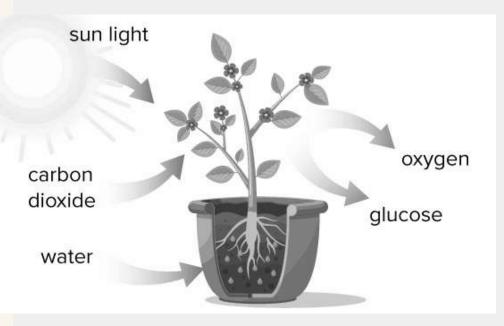
- Movement
- Active transport
- Production of proteins
- Cell division
- Photosynthesis
- Cellular respiration
- All other cellular reactions
- Cellular energy is stored in the ATP Molecule: Adenosine
- 3 Phosphate Groups Pentose Sugar

$ADP \rightarrow ATP$

ADP Molecule or Adenosine Diphosphate:

- Cells recycle the ADP to make new ATP to store more energy for future use.
- Many proteins have spots where ATP attaches to provide energy for the protein to do its job, and then the ADP is released for recycling.

ATP Molecule or Adenosine Triphosphate:


- Cells have enough ATP to last for a few seconds.
- ATP must constantly be made.
- ATP transfers energy very well.
- ATP is NOT good at energy storage.

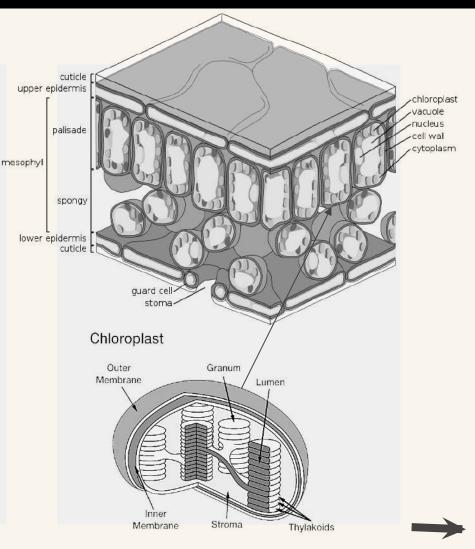
The What

Photosynthesis Summary

- The What: Is the process that uses the sun's energy to make chemical energy Glucose
- Purpose is to trap sun's energy and store it in glucose (food for the plant).
- Carried out by green plants and some bacteria known as autotrophic can make their own food.
- Reaction: 6 CO₂ + 6 H₂O C₆H₁₂O₆ + 6 O₂
- This process is known as a biochemical pathway: when products of one reaction are used as the reactants for the next.

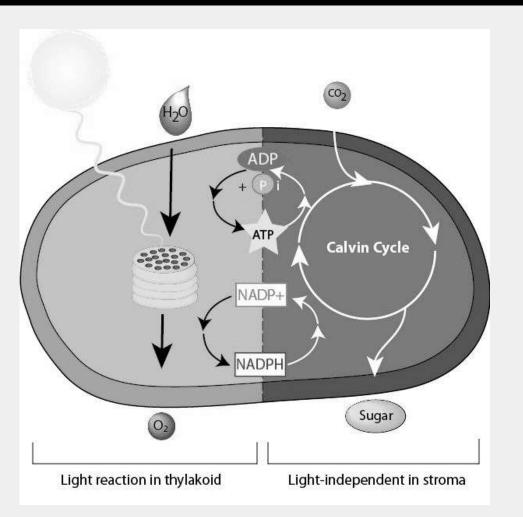
The Where

The Where


Mainly occurs in the leaves:

- Stoma pores
- Mesophyll cells
 - →Occurs in the Chloroplasts
 - inside the Mesophyll Cell
- Inside the **Chloroplast**
 - →Thylakoids are green because they contain chlorophyll.

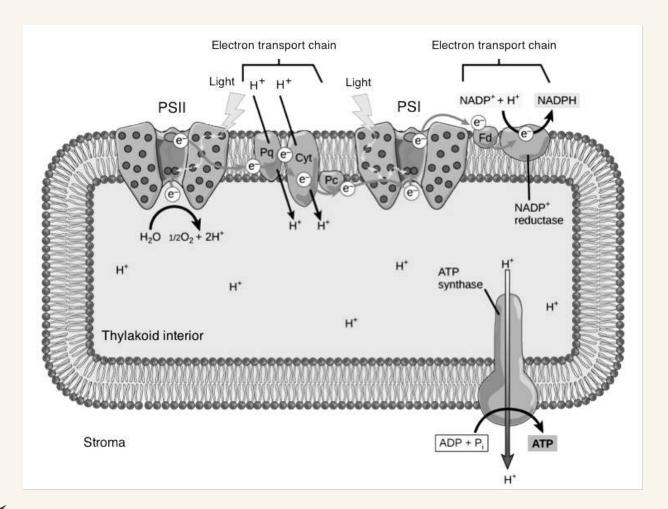
02


The Where - Continued

- →Chlorophyll a is the green
 pigment in plants that absorbs
 light energy. Absorbs light in the
 violet-blue and orange-red
 wavelengths
- →Chlorophyll B is a yellow pigment that absorbs blue wavelengths
- →Pigment is a light-absorbing compound.

The How

A Look inside Photosynthesis


• There are two separate reactions that occur inside

the process of Photosynthesis:

- Light (Dependent) Reaction
- Dark (Light Independent) Reaction / Calvin Cycle

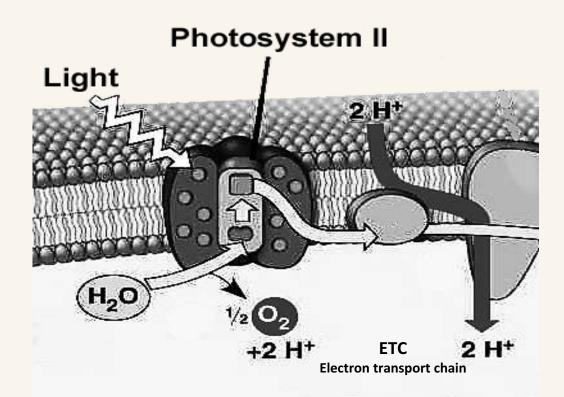
Light Dependent Reaction

Photosynthesis - The Specifics

• The LIGHT Dependent Reaction - First step

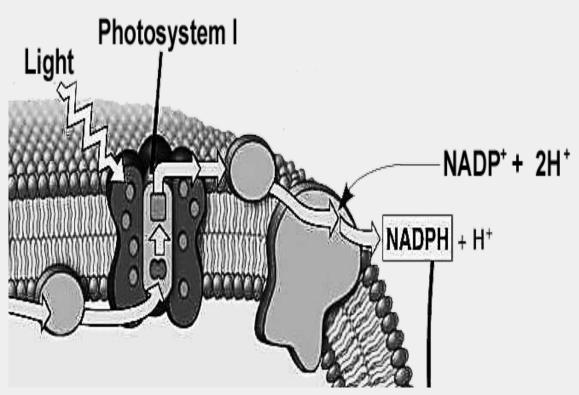
of photosynthesis that traps sunlight and makes electrons and ATP to run the dark reaction.

- → Occurs inside the thylakoid membranes.
- → Uses light energy.
- → Produce **Oxygen** from water.
- → Converts ADP to ATP.
- → Also converts **NADP+** into the energy
 - carrier **NADPH**.


Light Dependent - Stage 1

Stage 1:

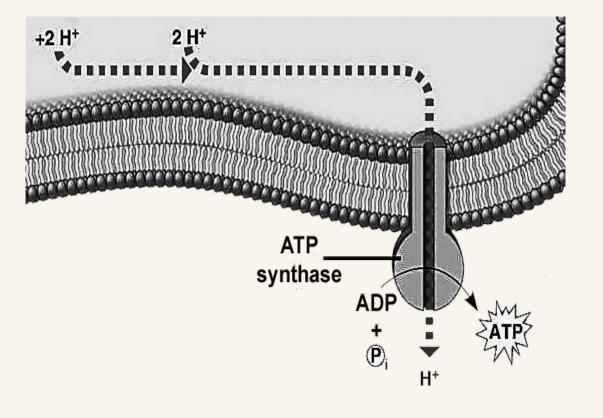
- Photosystem II absorbs light energy.
- Electrons are energized and passed to the
 - **Electron Transport Chain (ETC).**
- •Lost electrons are replaced from the splitting of water into 2H+, free electrons, and oxygen.



•2H+ pumped across thylakoid membrane.

Light Dependent - Stage 2

Stage 2:


- High-energy electrons are moved to photosystem I through the **Electron**
 - Transport Chain (ETC).
- Energy is used to transport H+ from the stoma to the inner thylakoid membrane.
- •NADP+ is converted to 2 molecules of
 - **NADPH** when it picks up 2 electrons & H+.

Light Dependent - Stage 3

Stage 3:

- Powers ATP synthesis.
- In the thylakoid membrane is an enzyme called ATP Synthase.
- As H+ ions pass through the thylakoid membrane, down their concentration gradient, the enzyme binds them to a molecule of ADP (hydrolysis).
- Forms 3 molecules of ATP that is used to fuel cellular activities.

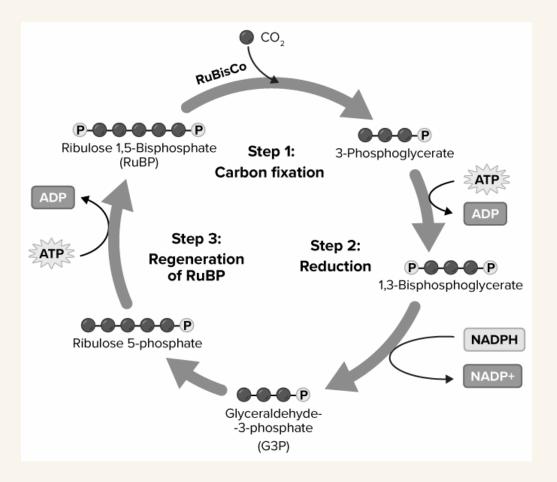
Light Independent Reaction / Calvin Cycle

The DARK Reaction / Calvin Cycle:

- Sunlight is not necessary for this reaction to occur.
- Occurs in the **stroma**
- Uses **ATP** and **NADPH** from light reaction as energy.
 - → Atmospheric C02 is used to make sugars like glucose and fructose.
 - → A 3-carbon molecule called Ribulose Biphosphate (RuBP) is used to regenerate the Calvin cycle. (Carbon Fixation)
 - → 3-CO2 molecules enter the cycle to form several intermediate compounds (PGA). (Reduction)
 - → The 3 carbon molecule used to make glucose is PGAL (Glyceraldehyde-3-phosphate). (Regeneration)
 - → Two turns of the Calvin Cycle are required to make one molecule of sugar and other compounds.

Light Independent Stages

Stage 1:


- CO2 from the atmosphere undergoes fixation and creates 6 copies
 - of an intermediate molecule called: 3-Phosphoglycerate (3-PGA)

Stage 2:

- ATP and NADPH lose a phosphate group to become ADP and NADH.
- 3-PGA converts to G3P Glyceraldehyde 3-phosphate and ultimately Glucose

Stage 3:

• 5 of the G3P molecules use 3 ATP molecules to regenerate Ribulose bisphosphate in order to go through the Calvin Cycle



Photosynthesis Biochemical Summary

$$\underline{6}CO_2 + \underline{6}H_2O - > C_6H_{12}O_6 + \underline{6}O_2$$

	Consumed	Produced
Light Reaction	12 H ₂ O	12 - NADPH 18 – ATP 6 – O ₂
Dark Reaction	6– CO ₂ 18 – ATP 12 - NADPH	1 — Sugar (Glucose) 6 — H₂O

Thank you!

Do you have any questions? instructor@email.com xxx-xxx-xxxx

