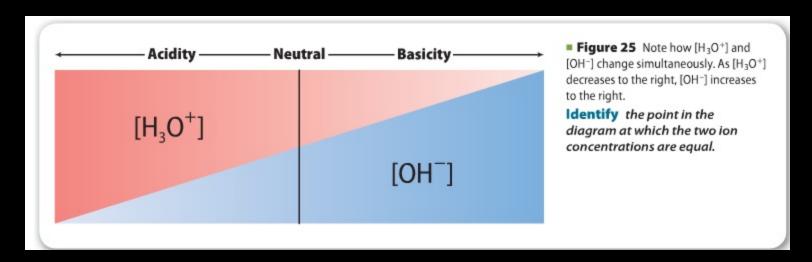
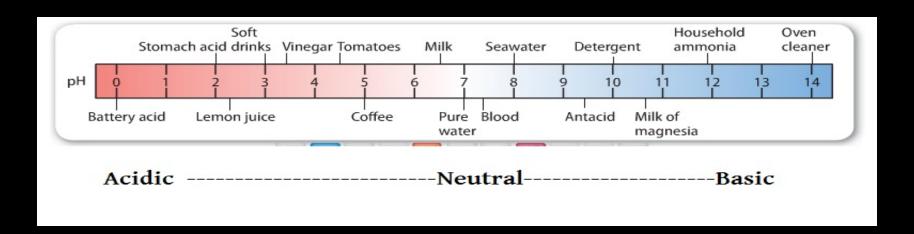


What does pH stand for?


- -The pH scale is a convenient way to describe the concentration of hydronium ions (H₃O⁺) in acidic solutions as well as the hydroxide ions (OH⁻)in basic solutions
- -Hydronium ions are produced when acids break apart (dissociate) in water.
- For example:When HCl dissociates in water the equation ,looks like this: $HCl + H_2O \rightarrow H_3O^+ + Cl^-$

- ⁻Hydoxide ions are produced when bases break apart (dissociate) in water.
- For example: When NaOH dissociates in water the equation ,looks like this: NaOH + H₂O → Na⁺ + OH⁻


• pH is a mathematical scale in which the concentration of hydronium and hydroxide ions in a solution are expressed as a number from 0-14.

Hydronium (H₃O⁺) and hydroxide (OH⁻) ions can be thought of being on a sliding scale. As the concentration of one increases, the concentration of the other decreases

- Acidic solutions contain more Hydronium (H₃O⁺) ions than hydroxide ions
- Basic solutions contain more hydroxide (OH-) ions than hydronium ions.
- Neutral solutions contain equal numbers of Hydronium (H₃O⁺) and hydroxide (OH⁻) ions.

- The pH decreases as the [H⁺] increases.
- A lower pH means a more acidic solution.
- -Acids have a pH of less than 7
- The pH increases as the [OH] increases.
- A higher pH means a more basic solution.
- -Bases have a pH of greater than 7
- -Neutral solutions have a pH equal to 7
- The pH scale and the pH values for several common substances are shown in the figure

- The pH scale is a log scale based on powers of 10.
- the pH changes by 1 for every power-of-10 change in the [H⁺].
 - For example, a solution of pH 3 has an H⁺ concentration which is 10 times that of a solution of pH 4 and 100 times that of a

solution of pH 5.

 This is true for bases too
 (a pH of 14 is 10x stronger than a pH of 13 and 100 x stronger than a pH of 12)

The Relationship of the H ⁺ Concentration of a Solution to Its pH			
		[H ⁺]	рН
		1.0×10^{-1}	1.00
1.0×10^{-2}	2.00		
1.0×10^{-3}	3.00		
1.0×10^{-4}	4.00		
1.0×10^{-5}	5.00		
1.0×10^{-6}	6.00		
1.0×10^{-7}	7.00		

• The end

