

PERIODIC TRENDS INQUIRY LAB

Let's investigate some interesting periodic relationships

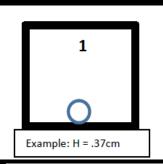
WHAT IS A TREND?

Provide at least one example of the latest "trends" in today's society.

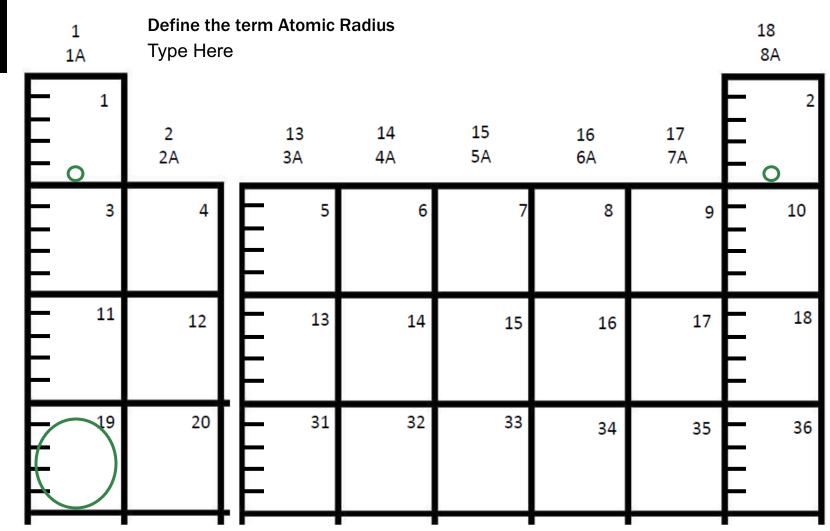
Type Here

Explain how we identify trends in a science or math classroom.

Type Here

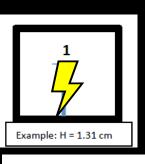

LET'S CONSIDER A FEW TRENDS WE HAVE ALREADY OBSERVED ON THE PERIODIC TABLE

Identify trends we have already explored on the periodic table in the space below.

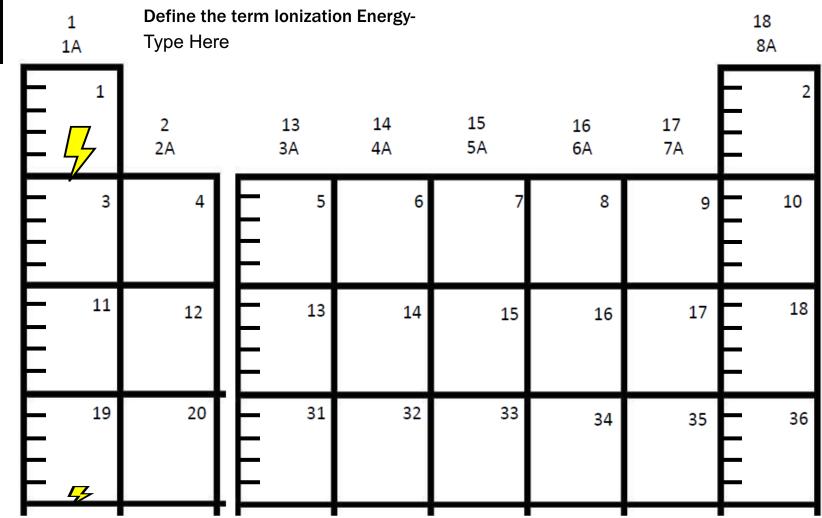

Type Here

Part 1Atomic Radius in Angstroms Draw a circle that represents the relative size of the atom. Use the data in the chart to determine the radius. Each tick is 0.50 Angstroms. I have done Hydrogen and Potassium for you!

Atomic #		Atomic Radius	Atomic #		Atomic Radius
1	Н	0.37	14	Si	1.18
2	Не	0.31	15	P	1.10
3	Li	1.52	16	S	1.03
4	Be	1.12	17	Cl	1.00
5	В	0.85	18	Ar	0.98
6	С	0.77	19	K	2.27
7	N	0.75	20	Ca	1.97
8	O	0.73	31	Ga	1.35
9	F	0.72	32	Ge	1.22
10	Ne	0.71	33	As	1.20
11	Na	1.86	34	Se	1.19
12	Mg	1.60	35	Br	1.14
13	Al	1.43	36	Kr	1.12



NOW WE WILL LOOK AT SOME OTHER TRENDS –USE YOUR SHAPES TOOLS TO HELP YOU VISUALIZE THE TRENDS



Part 2Ionization Energy in kJ/mol
Draw an lightening bolt that
represents the relative ionization
energy. Use the data in the chart to
determine the ionization energy. <u>Each</u>
<u>tick marks 0.75 kj/mol.</u>

Atomic #		Ionization Energy	Atomic #		Ionization Energy
1	Н	1.31	14	Si	0.79
2	He	2.40	15	P	1.06
3	Li	0.52	16	S	1.00
4	Be	0.90	17	C1	1.26
5	В	0.80	18	Ar	1.52
6	C	1.09	19	K	0.42
7	N	1.40	20	Ca	0.59
8	O	1.31	31	Ga	0.58
9	F	1.68	32	Ge	0.78
10	Ne	2.08	33	As	1.01
11	Na	0.50	34	Se	0.94
12	Mg	0.74	35	Br	1.14
13	Al	0.59	36	Kr	1.35

NOW WE WILL LOOK AT SOME OTHER TRENDS –USE YOUR SHAPES TOOLS TO HELP YOU VISUALIZE THE TRENDS

Part 2-

Electronegativity in Pauling Units
Draw a vertical line that represents
the relative electronegativity. Use the
data in the chart to determine the
electronegativity. Each tick marks 1.0
Pauling Units.

Atomic #

14

15

16

18

20

31

32

34

35

36

Si

P

Ar

Ca

Ga

Ge

Se

Br

Kr

Electronegativity

1.8

2.1

2.5

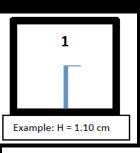
3.0

0.8

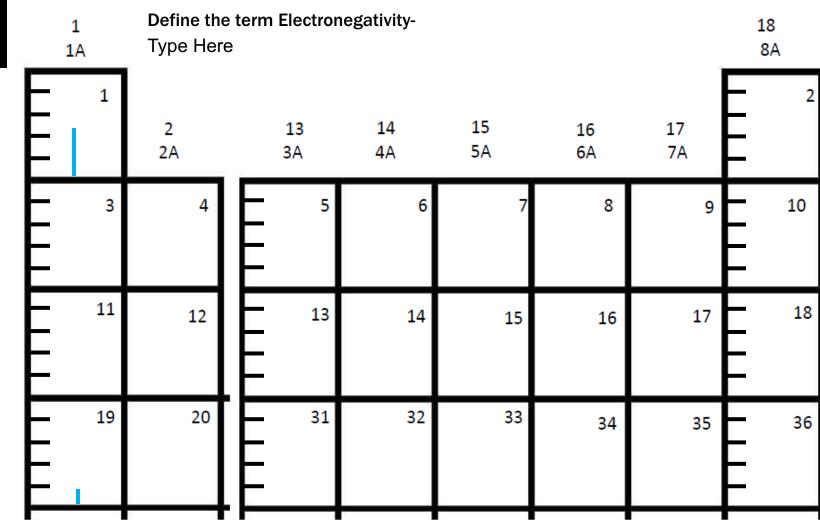
1.0

1.6

1.8


2.0

2.4


2.8

Atomic #		Electro- negativity
1	Н	2.1
2	He	-
3	Li	1.0
4	Be	1.5
5	В	2.0
6	C	2.5
7	N	3.0
8	O	3.5
9	F	4.0
10	Ne	-
11	Na	0.9
12	Mg	1.2
13	Al	1.5

Hint: A "-" indicates that the electronegativity is
negligible and these elements do not tend to react with
other elements. No line will be drawn.

NOW WE WILL LOOK AT SOME OTHER TRENDS –USE YOUR SHAPES TOOLS TO HELP YOU VISUALIZE THE TRENDS

NOW LET'S ANALYZE THESE TRENDS-USE THE CIRCLE → TO COPY+PASTE AND DRAG + DROP

Atomic Radius-

Moving from left to right across the period, atomic radius generally increased / decreased.

Moving from top to bottom down group, atomic radius generally increased / decreased.

Ionization Energy-

Moving from left to right across the period, ionization energy generally increased / decreased.

Moving from top to bottom down group, ionization energy generally increased / decreased.

Electronegativity-

Moving from left to right across the period, electronegativity generally increased / decreased.

Moving from top to bottom down group, electronegativity generally increased / decreased.