Name

1. Convert the measure to radians.

 $1\frac{4}{5}$ revolutions counterclockwise from the x-axis

[A]
$$\frac{18\pi}{5}$$
 [B] $-\frac{9\pi}{5}$

$$[B] - \frac{9\pi}{5}$$

[D]
$$\frac{18}{5}$$

3. Express the angle in radian measure in terms of π .

Do not use a calculator.

[A]
$$\frac{9\pi}{4}$$

[B]
$$\frac{4\pi}{9}$$

$$[B] \frac{4\pi}{9} \qquad [C] \frac{8\pi}{9}$$

[D]
$$\frac{9\pi}{8}$$

4. In which quadrant is the terminal side of the angle θ ?

$$\theta = -320^{\circ}$$

[A] Quad I

[B] Quad II

[C] Quad III

[D] Quad IV

5. Use the unit circle and a straightedge to approximate the value of the expression.

$$\cos(-4.25)$$

[A] 0.45

[B] 0.89

[C] - 0.45

[D] - 0.89

6. Use the unit circle and symmetry to help you evaluate the function(s).

[A] l

[B]
$$-\frac{\sqrt{2}}{2}$$

[C] $\frac{\sqrt{3}}{3}$

[D]
$$\frac{\sqrt{2}}{2}$$

7. Use the period of the function to select the expression that has the same value as the given expression.

[A] $\sin \frac{14\pi}{15}$ [B] $\sin \frac{4\pi}{15}$ [C] $\sin \frac{\pi}{15}$ [D] $\sin \frac{\pi}{5}$

8. Identify the ratio that defines the trigonometric function of the angle θ . $\sin \theta$

[A]
$$\frac{c}{a}$$
 [B] $\frac{a}{c}$ [C] $\frac{b}{c}$

[B]
$$\frac{a}{c}$$

[C]
$$\frac{b}{}$$

[D]
$$\frac{a}{b}$$

- 9. Identify the ratio $\frac{b}{a}$ for the indicated angle and find its value.
- [A] $\tan 60^\circ = \sqrt{3}$ [B] $\sin 60^\circ = \frac{\sqrt{3}}{3}$
- [C] $\cos 60^\circ = \frac{1}{2}$ [D] $\sec 60^\circ = \frac{1}{2}$

- 10. Let θ be an acute angle. Use the given function value and trigonometric identities to find the indicated trigonometric function. If $\csc \theta = \frac{25}{24}$, find $\sin \theta$.
- [B] $\frac{7}{25}$
- [C] $\frac{24}{25}$
- 11. Use the fundamental trigonometric identities to determine the simplified form of the expression. csc B
- [A] $\cos \beta$
- [B] $\tan \beta$
- [C] $\cot \beta$
- [D] $\sin \beta$
- 12. Identify the quadrant in which θ lies.
- $\sin > 0$ and $\tan < 0$
- [A] Quad I
- [B] Quad II
- [C] Quad III
- [D] Quad IV
- For #13 and 14, find the reference angle θ' .
- 13. $\theta = -\frac{5\pi}{6}$
- [A] $-\frac{\pi}{6}$ [B] $-\frac{7\pi}{6}$ [C] $\frac{5\pi}{6}$

- 14. $\theta = 1.9$
- [A] 1.9
- [B] 4.3832
- [C] 1.2416
- [D] 0.3292

- 15. Find the exact value of the function.
- [A] $\sqrt{2}$
- [B] 1
- [C] $\sqrt{3}$
- [D] $-\frac{\sqrt{3}}{2}$

 $\csc(-315^{\circ})$

- 16. Factor the expression and use the fundamental identities to $\cos^4 x - 2\cos^2 x + 1$ simplify.
- $[A] \sin^4 x$
- [B] $\sin^4 x$
- [C] 1
- [D] $\cos^4 x$
- 17. Convert all of the terms to sines and cosines and simplify to find the expression that completes the identity.
- [A] $\frac{\sin^2 x}{\cos^2 x}$ [B] $\frac{1}{\sin x}$
- [C] 1
- [D] $\frac{\sin^2 x}{\cos x}$
- 18. Identify the x-values that are solutions of the equation.
- $12\cot^2 x 4 = 0$
- [A] $\frac{\pi}{6}$, $\frac{5\pi}{6}$, $\frac{7\pi}{6}$, $\frac{11\pi}{6}$ [B] $\frac{\pi}{3}$, $\frac{2\pi}{3}$, $\frac{4\pi}{3}$, $\frac{5\pi}{3}$
- [C] $\frac{\pi}{4}$, $\frac{3\pi}{4}$, $\frac{5\pi}{4}$, $\frac{7\pi}{4}$ [D] $\frac{\pi}{4}$, $\frac{\pi}{2}$, $\frac{2\pi}{3}$, $\frac{5\pi}{6}$
- 19. Identify the initial and terminal points of a vector that has the same direction as v.

- [A] (0, -3) to (6, -10)
- [B] (-4, -2) to (-10, 5)
- [C] (-4, -2) to (3, 4)
- [D] (0, -3) to (-7, 3)
- 20. Identify the vector with the same magnitude as v.
- $v = \overrightarrow{AB}$ with A = (0, 0) and B = (5, 5).

[B] t [C] r [D] u

- 21. Identify the pair of points that could be the initial and terminal points of the vector. $\mathbf{u} = \langle 2, -5 \rangle$
- [A] (-6, 4) and (-1, 2) [B] (0, 3) and (-5, 1) [C] (-5, 1) and (-7, -4) [D] (-1, 2) and (1, -3)

[A]
$$4\sqrt{2}$$

 $\mathbf{u} = 9\mathbf{i} - 7\mathbf{j}$

[B] 130

divided to find the unit vector in the same direction.

[C] $\sqrt{130}$

25. Find the number by which the components of the vector can be

[D] 65

- 22. Identify the initial point of vector v.
- Given that $v = \langle -3, -3 \rangle$; terminal point is (3, -8)

- [A](-5, 6) [B](9, -2) [C](6, -5) [D](0, -11)
- 27. Which is the complex number in standard form? $i + 9i^2$

26. Express $\sqrt{-3}$ in the form bi where b is a real number.

[A] 9+i

[A] - 3i

- [B] -9+i
- [C] -8i

(B) $\sqrt{3}i$ (C) $\sqrt{-3}i$ (D) $-\sqrt{3}i$

[D] - 9 - i

- 23. Use the figure to identify the graph of the result of the specified vector operation.
- v + w

[A] [B]

[C]

- 28. (-6+6i)(-1+7i)
- [A] 48 36i
- [B] -36+48i
- [C] 36 48i
- [D] 48-48i
- 29. (-4+5i)+(-6-7i)
- [A] -10+2i
- [B] -10-2i
- [C] 2+12i
- [D] 59-2i

For #30 and 31, simplify and write the result in standard form.

- 30. $\frac{8-7i}{5i}$
- [A] $\frac{35+8i}{25}$
- [B] $\frac{-7-8i}{25}$
- [C] $\frac{35+8i}{5}$
- [D] $\frac{-7-8i}{5}$

24. Let u = -9i + 2j and v = 5i - 3j. Find 2u + 5v.

[D]

- [A] 18i + 15j
- [B] 7i + 11j
- [C] 2i + 6j
- [D] 43i + 19j

- 31. $\frac{-3+3i}{-3-i}$
- [A] $\frac{3-6i}{8}$ [B] $\frac{3-6i}{5}$ [C] $\frac{12+6i}{5}$ [D] $\frac{12+6i}{8}$

32. Solve for x.

$$7x^2 + 45 = 0$$

$$[A] x = \frac{\pm 3\sqrt{5}i}{7}$$

$$[B] x = \frac{\pm 3\sqrt{35}i}{7}$$

$$[C] x = \frac{\pm \sqrt{35}i}{15}$$

[D]
$$x = \pm 3\sqrt{5}i$$

- 33. At a distance of 31 feet from the base of a flag pole, the angle of elevation to the top of a flag that is 5.1 feet tall is 41.1°. The angle of elevation to the bottom of the flag is 35.2°. The pole extends 1 foot above the flag. Find the height of the pole.
- [A] 23.4 ft
- [B] 22.4 ft
- [C] 28 ft
- [D] 27 ft
- 34. Use the given measures to find the area of triangle ABC. $A = 23^{\circ}$, a = 9.2, b = 9.2
- [A] 29.40
- [B] 60.88
- [C] 16.54
- [D] 30.44
- 35. A hiker travels at 2.5 miles per hour at a heading of S 56° E from a ranger station. After 5 hours, how far south and how far east is the hiker from the ranger station?
- [A] 7.0 miles south and 10.4 miles east
- [B] 10.7 miles south and 6.5 miles east
- [C] 10.4 miles south and 7.0 miles east
- [D] 6.5 miles south and 10.7 miles east
- 36. A pole 55 feet tall is situated at the bottom of a hill that slopes up at an angle of 12.5°. A guy wire from the top of the pole to the hillside forms an angle of 40° with the top of the pole. Find the distance from the base of the pole to the guy wire's point of attachment.
- [A] 39.9 ft
- [B] 37.1 ft
- [C] 38.7 ft
- [D] 35.2 ft

- 37. The needle of the scale in the bulk food section of a supermarket is 22 cm long. Find the distance the tip of the needle travels when it rotates 64° .
- [A] 24.6 cm
- [B] 140.8 cm
- [C] 12.3 cm
- [D] 3.9 cm
- 38. Use the given measures and the Law of Cosines to solve triangle ABC.

$$a = 12, b = 21, c = 13$$

- [A] $A = 97.2^{\circ}$; $B = 24.2^{\circ}$; $C = 58.6^{\circ}$
- [B] $A = 114.2^{\circ}$; $B = 31.4^{\circ}$; $C = 34.4^{\circ}$
- [C] $A = 24.2^{\circ}$; $B = 97.2^{\circ}$; $C = 58.6^{\circ}$
- [D] $A = 31.4^{\circ}$; $B = 114.2^{\circ}$; $C = 34.4^{\circ}$
- 39. A 16-foot ladder makes an angle of 66° with the ground as it leans against a building. How far up the building does the ladder reach?
- [A] 35.94 ft
- [B] 6.51 ft
- [C] 14.62 ft
- [D] 17.51 ft

40. The cable supporting a ski lift rises 3 feet for each 8 feet of horizontal length. The top of the cable is fastened 637.5 feet above the cable's lowest point. Find the lengths b and c, and find the measure of angle θ .

[A] $b = 1816 \,\text{ft}$

(B)
$$b = 239 \text{ ft}$$

$$c = 1700 \, \text{ft}$$

$$c = 681 \, \text{ft}$$

$$\theta = 22.0^{\circ}$$

$$\theta$$
 = 69.4°

[C] $b = 681 \, \text{ft}$

[D]
$$b = 1700 \,\text{ft}$$

$$c = 239 \text{ ft}$$

$$c = 1816 \, \text{ft}$$

$$\theta = 0.4^{\circ}$$

$$\theta = 20.6^{\circ}$$