PATTERNS OF HEREDITY AND HUMAN GENETICS

Chapter 12

I. Pedigree

Graphic representation of genetic inheritance. (Look at Fig 12.1 and 12.2)

I. Pedigree

Circle = female Square = male Shaded = shows trait being studied Half Shaded = Carrier Carrier - heterozygous individual

I. Pedigree

Lets practice analyzing

Figure 14.3-5 Pedigree for skin color

Most disorders caused by recessive alleles

- Cystic Fibrosis
- Tay-Sachs disease

Phenylketonuria

Autosomal Recessive Pedigree

A. Cystic Fibrosis

- □ 1 in 28 carriers
- 1 in 2500 born inherits disorder
- Thick mucus in lungs and digestive tract

B. Tay-Sachs

- Absence of enzyme that breaks down lipids stored in nervous system
- Common in those whose ancestors are from eastern Europe

C. Phenylketonuria (PKU)

- Fails to convert AA phenylalanine to tyrosine
- Builds and damages CNS
- Babies tested positive put on strict diet
- Woman becomes pregnant- fetus damaged

III. Simple Dominant Heredity

Rule of Dominance

- One dominant allele = displayed trait
- Cleft Chin, widows peak, dangling earlobes, hitchhikers thumb, thick lips, hair on middle section of fingers

III. Simple Dominant Heredity

III. Simple Dominant Heredity

Huntington's Disease

- Lethal and caused by dominant allele
- Break down of parts of brain
- How does this get passed if lethal?

The genetics of Huntington's disease

Huntington's disease is a degenerative neurological condition that comes from a dominant mutation in a gene on the fourth chromosome.

Each person has two copies of the Huntington's gene, one inherited from each parent. A person needs **only one** abnormal copy to develop the disease.

Parents randomly give one of their two copies to each child. A child of a parent who has Huntington's disease has a **50 percent** chance of inheriting the abnormal copy from that parent.

A grandchild of a person with Huntington's disease has a **25 percent** risk if the gene status of the parent is unknown.

Source: Huntington's Outreach Project for Education at Stanford University

A. Incomplete Dominance

- Phenotype of heterozygous organisms are "between" parents' traits
 - Red flower (RR) with white flower (R'R') = Pink (RR')
 - R produces red pigment, R' produces no pigment

B. Codominance

Phenotypes of both parents to be produced in heterozygous individuals (expressed equally)
 B and W (two different uppercase letters to express alleles)

Codominance in Humans

Sickle-cell Anemia

- African decent and countries around Mediterranean Sea
- Homozygous red blood cells shaped like half moon
- Heterozygous normal and sickle shapes

- C. Sex Determination
 Humans = 46 chromosomes (23 pairs)
 22 pairs = Autosomes
 Sex chromosomes male or female (XY, XX)
 Abnormal numbers of sex chromosomes
 - XO, XXX or XXY, XYY

Genotype	Gender	Syndrome	Physical Traits
XXY, XXYY, XXXY	male		
ХУУ	male	XYY syndrome	normal male traits
хо			
XXX	female	Trisomy X	tall stature, learning disabilities, limited fertility

D. Sex Linked Inheritance

- Traits controlled by genes located on sex chromosomes
- Y has no corresponding allele
- Y linked only passed from male to male
- Females must have both recessive (xx)
- All X-linked are expressed in Males
 - No corresponding X to mask trait

D. Sex Linked Inheritance

Males pass X onto daughter, Y to son

Son receives recessive allele on X chromosome = display of recessive trait (red-green color blindness, hemophilia)

E. Multiple Alleles

- Traits controlled by more than two alleles (same gene)
- Can be formed by mutations

Ex. Blood Types

Blood Type

Blood types - A,B,AB, and O
 3 Alleles - I^A, I^B, and i
 Child = AB, Mother = A, father could not be O

Blood Type	Geno	otype	Can Receive Blood From:		
А	i [^] i i [^] i [^]	АА АО	A or O		
В	i ^B i i ^B i ^B	BB BO	B or O		
AB	i [^] i ^B	AB	A, B, AB, O		
0	ii	00	0		

Blood Type

Universal Donor - O; can give blood to any individual

Universal receiver - AB; can receive blood from any individual

F. Polygenic Inheritance

- Inheritance pattern of trait controlled by two or more genes
 - Plant height A, B, and C (3 genes on 3 chromosomes)
 - Ex in humans eye color, skin color
 - How is this different than multiple allele?

V. Environmental Influences

- Internal factors can influence expression
 Hormones, age
- External factors can influence expression
 Temperature, nutrition, light, chemicals
 Arctic foxes temperature affects coat color

V. Environmental Influences

- Identical twins
 - Same DNA
 - May look different because of environment
 - Nutrition
 - Exercise
 - Accidents (scars, etc)

VI. Chromosome #'s

Karyotype - chart of chromosome pairs
 Down syndrome: chromosome 21 Trisomy
 Higher chance with older mothers

70)(¢){
1	2		3	4		5
3	١	15	Ir	()	N	(
6	7	8	9	10	11	12
11	1	١ſ.	28	33	11	
13	14	15	16	17	18	
5.8	38	11	3		ŝ.	(
19	20	2	1 3	22	У	x