
Part 9
Space Mission Directions

1. Navigate out to the Google Classroom for this class.

2. Locate the Space Mission Part 9 assignment.

3. We are now ready to start adding code to our file. Using your Windows button menu, find and 
launch your IDLE program.

IDLE is the integrated development environment associated with Python. It is made up of a code
editor where you type your code along with other helpful tools that allow you to write, save, 
and test run programs. 

IDLE is designed to recognize Python code, compile Python code, and provide basic debugging 
tips to programmers if there are problems with their code.



4. Your IDLE window should look something like this once it has launched.:

On Startup, IDLE will display the Python Shell, which can be used to give commands to the 
computer’s operating system. Since we are viewing the shell through IDLE and not the actual 
command prompt window, the commands that we type into the Shell will not communicate 
directly with our operating system. However, you can type similar commands in the Python Shell
directly from the Python program (not through IDLE) and, if you have permission to access the 
operating system’s commands, you can communicate with the computer’s operating system 
that way.

In IDLE, the shell is mainly used as a launching screen for other activities that we will do, like 
writing code for our game or debugging a file.



5. Go to File > Open and then browse in the Starting Files folder I gave you to find the escape 
python file that we have been working on.

6. Your escape.py file will open up.

7. Scroll and click at the end of Line 479.

8. Press ENTER twice.



9. Type the code you see on Lines 481 – 483 of the screenshot below. Ensure your indentation and 
punctuation matches what is shown in the screenshot.

Line 481 creates a new empty list called hazard_map.

Lines 482 – 483 fill the harzard_map list with rows of 0s that are as wide as the room width.

10. Ensure that your “GAME LOOP” comment runs on Lines 486 – 488 of your code, as shown in the 
screenshot below.



11. Scroll and click at the end of Line 495.

12. Press ENTER.

13. Type the code you see on Line 496 of the screenshot below to call the hazard_start() method.



14. Scroll and click at the end of Line 550.



15. Uncomment the clock.unschedule(hazard_move) commands that you see on Lines 550, 560, 
570, and 580 of your code by deleting the “#” symbol at the beginning of each line. The 
screenshot below shows the uncommented code that you should have after you have 
completed this step.



16. Scroll and click at the end of Line 707.

17. Press ENTER twice.

18. Type the code you see on Lines 709 – 711 of the screenshot below. Ensure your indentation and 
punctuation match what is shown in the screenshot.

Line 709 creates sets the value of the hazard_here variable to the current value of the y and x 
coordinate positions on the hazard_map. 

Line 710 will check to see if the value of the hazard_here variable is not equal to 0. Remember, 
when we created the hazard_map list, we set all of the values to 0. We will eventually change 
the values in the hazard_map list if there is, in fact, a hazard in that particular tile. This function 
will check to see if the value in the hazard_map list is NOT zero, meaning there is a hazard at 
that tile.

If this is true, Line 711 will draw the appropriate image that represents the hazard at the 
appropriate location.



19. Scroll and click at the end of Line 1184.

20. Press ENTER three times.

21. Type the code you see on Lines 1187 – 1203 of the screenshot below. Ensure your indentation, 
punctuation, and line spacing match what is shown in the screenshot.

Lines 1187 – 1189 create a new section in your code called AIR.

Line 1191 creates a new method called draw_energy_air.

We begin this function by drawing a black box over the status area at the bottom of the screen 
to clear it (Lines 1192 – 1193). We then add the AIR label in blue and the ENERGY label in yellow 



(Lines 1194 – 1195). This function will use the air and energy variables, which are already set to 
100 in the VARIABLES part of the program at the beginning of the code.

If the player has some air left (if the variable air is more than 0), a box is created that uses the air
variable for its width (Lines 1197 – 1198). The box is then filled with the color blue (Line 1199). 
This draws the AIR indicator bar, which starts off being 100 pixels wide and gets smaller as the 
AIR variable decreases.

We use similar instructions on Lines 1201 – 1203 to draw the energy bar, but the bar’s start 
position is farther to the right.

22. Press ENTER twice.



23. Type the code you see on Lines 1205 – 1225 of the screenshot below. Ensure your indentation, 
punctuation, and line spacing match what is shown in the screenshot.

Line 1205 creates a new function called end_the_game. This function will require the reason to 
be input whenever it is called.

Line 1206 converts the game_over variable to a global variable.

Line 1207 will display the reason for the character’s death on the screen.



Line 1208 will change the value of the game_over variable to True.

Line 1209 will play the say_mission_fail sound and Line 1210 will play the gameover sound.

Lines 1211 – 1212 will draw text that says GAME OVER on the screen in white font with a black 
drop shadow (scolor means shadow color).

Line 1214 creates another function called air_countdown.

Line 1215 converts and air and game_over variables to global variables.

Line 1216 will check to see if the game_over variable is True. If so, we use a return statement on
Line 1217 to exit out of the function and onto the next line of code below of the air_countdown 
method. We do not need to continue executing the function if the game is over.

Line 1218 will reduce the value of the air variable by 1.

Line 1219 will check to see if the value of the air variable is equal to 20. If this is true, the 
say_air_low sound will play (Line 1220).

Line 1221 will check to see if the value of the air variable is equal to 10. If this is due, the 
say_act_now sound will play (Line 1222).

Line 1223 will redraw the energy and air bars using the draw_energy_air function.

Finally, Line 1224 will check to see if the value of the air variable is less than 1. If this is true, Line
1225 will run the end_the_game function using the reason, “You’re out of air!” 

24. Press ENTER twice.



25. Type the code you see on Lines 1227 – 1231 of the screenshot below. Ensure your indentation 
and punctuation match what is shown in the screenshot.

Line 1227 creates a new function called alarm.

Lines 1228 – 1229 will display a new message that tells the player that they are running out of 
air. Lines 1230 and 1231 will play the alarm and say_breach sounds.

26. Press ENTER three times.



27. Type the code you see on Lines 1234 – 1248 of the screenshot below. Ensure your indentation, 
punctuation, and line spacing match what is shown in the screenshot.

Lines 1234 – 1236 create a new section in your code called HAZARDS.

Lines 1238 – 1248 create the hazard_data dictionary. This dictionary uses the room numbers as 
dictionary keys. For each room, there is a list that contains the data for all the hazards. The data 
for each hazard is in a list that contains the hazard’s y position, x position, starting direction, and
number to add to the direction of the hazard when it hits something.

As a note, direction 1 is up, 2 is right, 3 is down, and 4 is left.

28. Press ENTER twice.



29. Type the code you see on Lines 1250 – 1267 of the screenshot below. Ensure your indentation, 
punctuation, and line spacing match what is shown in the screenshot.

Line 1250 creates a new method called deplete_energy. This method will require the penalty to 
be input whenever it is called.

Line 1251 concerts the energy and game_over variables to global variables.

Line 1252 will check to see if the game_over variable is True. If so, Line 1253 will execute a 
return statement to exit out of the deplete_energy method and discontinue its execution.

Line 1254 will subtract the penalty value from the current value of the energy variable to 
calculate the new value of the energy variable. Then, the energy bar will be redrawn using the 
draw_energy_air method on Line 1255.



The Line 1256 will check to see if the value of the energy variable is less than 1. If so, Line 1257 
will execute the end_the_game method using the reason, “You’re out of energy!”

Line 1259 creates another new function called hazard_start.

Line 1260 converts the current_room_harzards_list and the hazard_map to global variables.

Line 1261 will check to see if the current_room that the player is in is in the hazard_data.keys, 
meaning that the current room number is listed as a key in the hazard_data list and that room 
has a hazard in it.

If so, Line 1262 will input the hazard data for that room to the current_room_hazards_list to 
store all of the hazards in that room.

Lines 1263 – 1266 will use the hazard data from the current_room_hazards_list to valvulate the 
y and x location of each room hazard. The three hazard objects have the numbers 49, 50, and 51
in the objects dictionary. The program uses a simple calculation to work out which one goes into
a particular room. As you’ve seen before, Python’s % operator gives you the remainder after 
doing a division. When you divide any number by 3, the remainder will be 0, 1, or 2. So the 
program divides the room number by 3 and adds the remainder to 49 to pick an object number 
(Line 1266).

The function finishes on Line 1267 by scheduling the hazard)move function to run every 0.15 
seconds.

30. Press ENTER twice.



31. Type the code you see on Lines 1269 – 1274 of the screenshot below. Ensure your indentation, 
punctuation, and line spacing match what is shown in the screenshot.

Line 1269 creates a new function called hazard_move.

Lines 1270 and 1271 convert the current_room_hazards_list, hazard_data, hazard_map, 
old_player_x, and old_player_y to global variables.

Line 1273 will check to see if the game_over variable is True. If so, Line 1274 will execute a 
return statement to exit out of this function and stop its execution.

32. Press ENTER twice.



33. Type the code you see on Lines 1276 – 1294 of the screenshot below. Ensure your indentation, 
punctuation, and line spacing match what is shown in the screenshot.

The hazard_move function uses an idea similar to the player movement. The hazard’s position is
stored in the old_hazard_x and old_hazard_y variables. The hazard is then moved using the if 
statements on Lines 1285 – 1294.

34. Press ENTER twice.



35. Type the code you see on Lines 1296 – 1301 of the screenshot below. Ensure your indentation 
and punctuation match what is shown in the screenshot.

Lines 1296 – 1298 will check to see if the hazard has hit the player. If so, Line 1299 will play the 
ouch sound. Line 1300 will run the deplete_energy function to deplete the player’s energy by 
10. Line 1301 will change the value of the hazard_should_bounce variable to True (more on this 
later).

36. Press ENTER twice.



37. Type the code you see on Lines 1303 – 1315 of the screenshot below. Ensure your indentation 
and punctuation match what is shown in the screenshot.

Line 1303 contains a comment.

Lines 1304 – 1315 contain statements that check to see if the hazard has gone out the room 
door by checking the hazards x and y locations. In each instance, the hazard_should_bounce 
variable is changed to True and the hazard is moved back into the edge of the room.

38. Press ENTER twice.



39. Type the code you see on Lines 1317 – 1334 of the screenshot below. Ensure your indentation, 
punctuation, and line spacing match what is shown in the screenshot.

Line 1317 contains a comment.

Lines 1318 – 1319 will check to see if the hazard has hit scenery or another hazard in the room. 
If this is true, Line 1320 will change the value of the hazard_should_bounce variable to True.



Line 1322 will check to see if the hazard_should_bounce variable is set to True. In the past few 
steps, we have set this variable to True if the hazard has hit anything (a player, the edge of the 
room, scenery, or another hazard).

If this is true, Lines 1323 – 1324 will reset the hazard’s position back to its old position. Line 
1325 will change the direction of the hazard by adding the last number it its list of data to the 
direction number. If adding this number increases the direction number to a number more than 
4, the function subtracts 4 because 4 is the highest valid direction number (Lines 1326 – 1327). 
On the other hand, if adding the hazard_direction number decreases the direction number to 
less than 1, the function adds 4 (Lines 1328 – 1329). Finally, the new direction is saved in the 
hazard data list (Line 1330).

At the end of the function, the appropriate hazard is put into the hazard map at the appropriate 
y and x location (Lines 1332 – 1334).



40. Ensure your “START” comment runs on Lines 1337 – 1339, as shown in the screenshot below.

41. Scroll and click at the end of Line 1344.

42. Press ENTER.

43. Type the code you see on Lines 1345 - 1349 of the screenshot below.

Lines 1345 – 1346 will use the clock.schedule_unique function to run the draw_energy_air and 
alarm functions once, after a delay of .5 seconds and 10 seconds, respectively. These functions 
will run once, after a delay, when the program starts.

Line 1347 contains a comment.

Line 1348 will run the air_countdown function every 5 seconds.

Line 1349 will play the mission sound.

44. Go to File > Save. Your game is complete!



Final Code:






















