
Part 8
Space Mission Directions

1. Navigate out to the Google Classroom for this class.

2. Locate the Space Mission Part 8 assignment.

3. We are now ready to start adding code to our file. Using your Windows button menu, find and
launch your IDLE program.

IDLE is the integrated development environment associated with Python. It is made up of a code
editor where you type your code along with other helpful tools that allow you to write, save,
and test run programs.

IDLE is designed to recognize Python code, compile Python code, and provide basic debugging
tips to programmers if there are problems with their code.

4. Your IDLE window should look something like this once it has launched.:

On Startup, IDLE will display the Python Shell, which can be used to give commands to the
computer’s operating system. Since we are viewing the shell through IDLE and not the actual
command prompt window, the commands that we type into the Shell will not communicate
directly with our operating system. However, you can type similar commands in the Python Shell
directly from the Python program (not through IDLE) and, if you have permission to access the
operating system’s commands, you can communicate with the computer’s operating system
that way.

In IDLE, the shell is mainly used as a launching screen for other activities that we will do, like
writing code for our game or debugging a file.

5. Go to File > Open and then browse in the Starting Files folder I gave you to find the escape
python file that we have been working on.

6. Your escape.py file will open up.

7. Scroll and click at the end of Line 487.

8. Modify the start_room method by adding the code you see on Lines 487, 489, 490, and 491 of
the screenshot below.

Line 487 converts the airlock_door_frame variable into a global variable so the start_room
function can modify its value.

Line 488 is code that already existed in your game from a previous chapter.

Line 489 begins an “if” function that checks to see if the player is standing in room 26, which is
the room that has a self-shutting airlock door. If the player is in room 26, Lines 490 and 491 will
run.

Line 490 sets the value of the airlock_door_frame variable to 0. Line 491 sets the
door_in_room_26 method to run every .05 seconds. We haven’t created this method or
initialized the airlock_door_frame variable yet.

9. Scroll and click at the end of Line 1038.

10. Press ENTER twice.

11. Type the code you see on Lines 1040 – 1048 of the screenshot below. Ensure your indentation
and punctuation match what is shown in the screenshot.

Line 1040 contains a comment.

This section of code enables players to use keys to open the doors. We create a new dictionary
called ACCESS_DICTIONARY that uses the access card number as the dictionary key and the door
number as the data. So object 79 (an access card) is used to open door 22, for example (Line
1041).

When the player presses U, the door opens (Line 1048) if they have selected one of the items in
the dictionary for unlocking doors (Line 1042 - 1043) and if they are standing in the same room
as the door it unlocks (Line 1044). We also play a sound effect of a computer voice saying “doors
open” (Line 1046), play the doors sound (Line 1047), and change the value of the use_message
variable (Line 1045).

12. Scroll down and click at the end of Line 1076.

13. Press ENTER three times.

14. Type the code you see on Lines 1079 – 1094 of the screenshot below. Ensure your line spacing,
indentation, and punctuation match what is shown in the screenshot.

Lines 1079 – 1081 create a new section in the code called DOORS.

Line 1083 establishes a new function called open_door. This function will require the
opening_door_number to be input whenever it is called.

Lines 1084 and 1085 establish the door_frames, door_shadow_frames, door_frame_number,
and door_object_number as global variables.

The door animation to open the door consists of five frames, numbered 0 to 4. We store images
for the animation in a list called door_frames (Lines 1086 – 1087) and store the frame number in
the variable called door_frame_number (Line 1092).

Line 1088 contains a comment.

Lines 1089 – 1091 contain door frame animation images for the door’s shadow, stored in a list
called door_shadow_frames.

In the variable door_object_number (Line 1093), we store the object number of the door that
will be opening or closing. After the variables and list have been set up, the function
do_door_animation (Line 1094) is started to carry out the animation. We will create that
function later.

15. Press ENTER twice.

16. Type the code that you see on Lines 1096 – 1112 of the screenshot below. Ensure your
indentation and punctuation match what is shown in the screenshot.

Line 1096 creates a new function called close_door. This function will require the
closing_door_number to be input whenever it is called

As we did in the open_door function, Lines 1097 – 1098 convert the door_frames,
door_shadow_frames, door_frame_number, door_object_number, and player_y variables to
global variables.

Lines 1099 – 1103 create two different lists, one for the door animation and one for the door
shadow animation, to store the images for the animation. Notice in these lists that the images
are reversed from the open_door function. That is because we want to animate the door
closing, not opening, so we will need to reverse the order of the images.

Line 1104 establishes sets the door_frame_number variable to 0 and Line 1105 sets the
door_object_number variable to be the same as the closing_door_number.

Line 1106 contains a comment.

Lines 1107 – 1111 run through a series of checks to ensure the door doesn’t close on top of a
player. If the door is closing and the player is in the way, the program will change the player’s
position to move them out of the doorway.

Line 1112 will run the do_door_animation function, similar to what we did in the open_door
function we wrote previously.

17. Press ENTER twice.

18. Type the code you see on Lines 1114 – 1126 of the screenshot below. Ensure your indentation
and punctuation match what is shown in the screenshot.

Line 1114 creates a new function called do_door_animation.

Line 1115 converts the door_frames, door_frame_number, door_object_number, and objects
variables to global variables.

The objects dictionary contains, among other things, the images to use for a particular object.
This new function starts by changing the door’s image and shadow image in that dictionary to
the current animation frame (Lines 1116 - 1117). When the room is redrawn, it will now use that
animation frame.

The function then increases the animation frame number by 1 (Line 1118) so the next animation
frame can be shown next time this function runs.

If the frame is now 5 (Line 1119), it means we’ve reached the end of the animation. In that case,
we check whether the door has opened (rather than closed) by seeing whether the final frame
was a floor tile, showing no door (Line 1120). Remember, an index number of -1 will give you
the last item in a list.

If the door was opened, the door will be removed from view (Line 1121) and moved to room 0.

Lines 1122 and 1123 contain comments.

Line 1124 runs the generate_map function to redraw the map.

Line 1125 contains an “else” function that will run if the door animation frame is not equal to 5.
Line 1126 will run the do_door_animation again after .15 seconds. Essentially, we continue to
run the door animation, increasing the animation frame images by 1 each time the function
runs. When it gets to the final frame, if the door has opened, it will remove the door from view.

19. Press ENTER twice.

20. Type the code you see on Lines 1128 – 1138 of the screenshot below. Ensure your indentation
and punctuation match what is shown in the screenshot.

Line 1128 creates a new function called shut_engineering_door.

Line 1129 establishes the current_room, door_room_number, and props variables as global
variables.

The shut_engineering_door function has two door props to work with, objects 25 and 26,
because the player can see this door from either side depending on which room they’re in. The
first thing we do is update the props dictionary so these doors appear in the rooms (Lines 1130 –
1131).

Line 1132 will run the generate_map function to redraw the room map with the doors in place.
If the player is in a room with one of these doors, this function updates the room map for the
current room. In other cases, the generate_map function still runs but nothing changes.

Line 1133 will check to see if the player is in room 27. If so, Line 1134 will run the close_door
function for object 26.

Line 1135 will check to see if the player is in room 32. If so, Line 1136 will fun the close_door
function for object 25.

Line 1137 runs the show_text function to display a message on the screen. Line 1138 will play
the say_doors_closed sound for the player.

21. Press ENTER twice.

22. Type the code you see on Lines 1140 – 1152 of the screenshot below. Ensure your indentation,
punctuation, and line spacing match what is shown in the screenshot.

Line 1140 creates a new function called door_in_room_26.

Line 1141 establishes the airlock_door_frame and room_map variables as global variables.

We store the animation frames for the door in the list frames, including the first frame that
shows the door shut and the final frame that shows an empty floor tile instead of the door
(Lines 1142 – 1144). We also create a separate list for the animation frames for the doors
shadow on Lines 1146 – 1148. We leave the final frame out of the shadow animation since there
will be no shadow when the door is completely open.

Line 1150 will check to see if the player is still in room 26. If the player has left the room, the
clock.unschedule function will stop the door_in_room_26 function from running regularly and
exit the function using a return statement so that the door animation stops.

23. Press ENTER twice.

24. Type the code you see on Lines 1154 – 1172 of the screenshot below. Ensure your indentation,
punctuation, and line spacing match what is shown in the screenshot.

Line 1154 contains a comment.

Lines 1155 - 1156 will check to see if the player is standing on the pressure pad in room 26 and
that the door is currently in the room. If this is true, Line 1157 will increase the animation door
frame for the airlock door by 1.

Line 1158 will check to see if the airlock_door_frame value is equal to 5, which is the last image
in the animation, meaning the door is fully open. If this is true, Line 1159 will remove the door
from view (by moving the prop to room 0), and the room_map will also be updated.

Lines 1164 – 1172 will perform a similar set of commands in reverse to close the door. Lines
1164 – 1165 will check to see if the player is not standing on the pressure pad and that the
airlock_door_frame value is larger than 0 (meaning that the door is at least partially open).

Line 1166 will check to see if the airlock_door_frame value is equal to 5, meaning that the door
is currently fully open.

Line 1167 contains a comment.

If the door is fully open, the props and the room_map dictionaries will be updated to put the
door back into the room so the player can see it. Remember, the number 255 is used to indicate
an object that takes up more than one tile.

Line 1172 will subtract 1 from the value of the airlock_door_frame, moving backwards through
the animation to begin closing the door.

25. Press ENTER twice.

26. Type the code you see on Lines 1174 – 1175 of the screenshot below. Ensure your indentation
matches what is shown in the screenshot.

Lines 1174 and 1175 will change the image file for the door and door shadow in the objects
dictionary to match the current animation frame.

27. Go to File > Save to save your code.

Final Code:

