
Part 7
Space Mission Directions

1. Navigate out to the Google Classroom for this class.

2. Locate the Space Mission Part 7 assignment.

3. We are now ready to start adding code to our file. Using your Windows button menu, find and
launch your IDLE program.

IDLE is the integrated development environment associated with Python. It is made up of a code
editor where you type your code along with other helpful tools that allow you to write, save,
and test run programs.

IDLE is designed to recognize Python code, compile Python code, and provide basic debugging
tips to programmers if there are problems with their code.

4. Your IDLE window should look something like this once it has launched.:

On Startup, IDLE will display the Python Shell, which can be used to give commands to the
computer’s operating system. Since we are viewing the shell through IDLE and not the actual
command prompt window, the commands that we type into the Shell will not communicate
directly with our operating system. However, you can type similar commands in the Python Shell
directly from the Python program (not through IDLE) and, if you have permission to access the
operating system’s commands, you can communicate with the computer’s operating system
that way.

In IDLE, the shell is mainly used as a launching screen for other activities that we will do, like
writing code for our game or debugging a file.

5. Go to File > Open and then browse in the Starting Files folder I gave you to find the escape
python file that we have been working on.

6. Your escape.py file will open up.

7. Scroll and click at the end of Line 89.

8. Press ENTER twice.

9. Type the code you see on Lines 91 – 93 of the screenshot below.

Line 91 creates two new variables called air and energy. Both variables are set to 100.

Line 92 creates two more new variables called suit_stitched and air_fixed. Both variables are set
to False.

Line 93 creates a fifth new variable called launch_frame. Its initial value is set to 0.

10. Ensure the “MAP” comment runs from Lines 96 – 98 of your code.

11. Scroll down and click at the end of Line 594.

12. Press ENTER twice.

13. Type the code you see on Lines 596 – 597 of the screenshot below. Ensure your indentation
matches what is shown in the screenshot.

Line 596 checks to see if the u key on the keyboard has been pressed. If it has, Line 597 will run
the use_object function, which we haven’t written yet.

14. Delete the blank line on Line 598.

15. Scroll and click at the end of Line 764.

16. Press ENTER twice.

17. Type the code you see on Lines 767 – 771 of the screenshot below. Ensure your indentation and
punctuation match what is shown in the screenshot below.

In this game’s programming, combinations are called recipes. A single recipe contains three
object numbers in a list. The first two are the items that are combined, and the third one is the
object number they make when they’re combined.

When you combine objects, the new object goes into your inventory. The objects you combined
are removed from the game if they’re props. Sometimes one will be a piece of scenery and so
will remain in the game.

Line 767 begins a list of recipes that lists the two items that can be combined to create the third
item.

18. Press ENTER twice.

19. Type the code you see on Lines 773 – 783 of the screenshot below. Ensure your indentation and
punctuation match what is shown in the screenshot.

Just as we have done before, Lines 773 – 783 contain a checksum to ensure that all code has
been entered accurately. If not, the game will not run.

20. Ensure that the “PROP INTERACTIONS” comment runs on Lines 786 – 788 of your code.

21. Scroll and click at the end of Line 891.

22. Press ENTER three times.

23. Type the code you see on Lines 894 – 920 of the screenshot below. Ensure your indentation,
punctuation, and line spacing match what is shown in the screenshot.

Lines 894 – 896 create the USE OBJECTS section of the code.

Line 898 creates a new function called use_object.

Lines 899 – 900 convert the room_map, item_carrying, air, selected_i9tem, energy,
in_my_pockets, suit_stitched, air_fixed, and game_over variables to global variables so that the
use_object function can modify them.

Line 902 creates the use_message variable and inputs a default message for the object.

Line 903 creates a standard_responses dictionary with a variety of messages that can be
displayed for the player. Some of the objects have no real function in the game but will reward
the player with a message when they try to use them. These messages could include clues as
well as add to the game story. The dictionary standard_responses contains messages to show
players when they use certain objects, identified by their object number. For example, if they
want to use the bed, which is object 4, they see a message that says, “You can’t take this lying
down!”

24. Press ENTER twice.

25. Type the code you see on Lines 922 – 930 of the screenshot below. Ensure your indentation,
punctuation, and line spacing match what is being shown in the screenshot.

Line 922 contains a comment.

Line 923 begins the process of figuring out which message the display to the player. The variable
item_the_player_is_on stores the object number at the player’s position in the room (Line 923).
Players can use objects they are carrying or standing on. On Line 924, we set up a loop that goes
through a list the contains two items: the item number the player is standing on and the item
number the player is carrying. If either of them is a key for the standard_responses dictionary
(Line 925), the use_message is updated to the object’s message from that dictionary (Line 926).
The program prioritizes items you’re carrying over items you’re standing on if they both have
standard messages.

Line 928 will check to see if the player is carrying item 70 or standing on item number 70, which
is an MP3 player. If this is true, it will display the message “Banging tunes!” and play the
steelmusic sound.

26. Press ENTER twice.

27. Type the code you see on Lines 932 – 953 of the screenshot below. Ensure your indentation,
punctuation, and line spacing match what is shown in the screenshot.

Line 932 will check to see if the player is standing on item number 11, which is a computer. If
this is true, a message will be generated (Line 933 – 934) and displayed (Line 941) that combines
information from the air and energy variables and adding an alert if the suit or air bottle is faulty
(Lines 935 – 940). There’s also a computer speech sound effect that says, “status report!” At the
end of the program, there will be a brief pause (Line 943).

The return statement on Line 946 prevents the player from accidentally using another object
when they intended to use the computer. If we didn’t include this return instruction, the player
might end up using another prop that they’re carrying instead of the computer.

Line 948 will check to see if the player is carrying or is on item number 60, which is a sealed air
canister.

Line 949 updates the use_message variable telling the player that they have fixed the sealed air
canister to the suit. Line 950 updates the air_fixed variable to True. Line 951 changes the air
variable to 90. Line 952 calls the air_countdown function, which we haven’t written yet. Line
953 removes item 60 from the player’s inventory using the remove_object function.

28. Press ENTER twice.

29. Type the code you see on Lines 955 – 965 of the screenshot below. Ensure your indentation, line
spacing, and punctuation match what is shown in the screenshot.

Lines 955 – 956 will check to see if the player is standing on or carrying item 58, which is a
needle and that the suit is NOT stitched. If this is true, Lines 957 – 958 will update the
use_message variable to tell the player that they use the needle to fix the suit fabric. Line 959
will update the suit_stitched variable to True and Line 960 will remove item 58 from the player’s
inventor using the remove_object function.

Line 962 will check to see if the player is carrying or is standing on a radio, which is item 72.

Lines 963 – 964 will update the use_message variable to a message indicating the player uses
the radio to call for help.

Line 965 will update the room number of prop 40 to room 13, which is an empty area of the
ouside area of the space station.

30. Press ENTER twice.

31. Type the code you see on Lines 967 – 982 of the screenshot below. Ensure your indentation, line
spacing, and punctuation match what is shown in the screenshot.

Lines 967 - 968 will check to see if the player is on or carrying item 66, which is a large spoon,
and that the player is in an outside room.

Line 969 will update the use_message variable.

Lines 970 - 972 will check to see if the player’s position is equal to the location of the Poodle
lander. If this is true, the Poodle lander will be added to the player’s inventory using the
add_object method (Line 973) and the use_message variable will be updated to tell the player
that they have found the poodle lander (Line 974).

Line 976 will check to see if the player is on object 40, which is a rescue ship. If this is true, the
air_countdown will stop (Line 977).

Lines 978 and 979 will display messages telling the player that they have made it to safety.

Line 980 will change the game_over variable to True.

Line 981 will play the take_off sound.

Line 982 will call the game_completion_sequence method, which we haven’t written yet.

32. Press ENTER twice.

33. Type the code you see on Lines 984 – 1000 of the screenshot below. Ensure your indentation,
line spacing, and punctuation match what is shown in the screenshot.

Line 984 will check to see if the player is standing on a shrub (item 16). If this is true, the value of
the energy variable will be increased by 1 (Line 985).

Line 986 checks to see if the energy variable is larger than 100. If this is true, it will be reset back
to its max value of 100.

Line 988 will update the use_message variable. Line 989 will run the draw_energy_air function,
which we haven’t written yet.

Line 991 will check to see if the player is standing on a button to open a door (object 42). If this
is true, and the current room number is 27 (Line 992), the open_door function for item 26 will
run. We have not written this function yet.

Lines 994 and 995 will update the room number for props 25 and 26 to 0, removing the door
from view.

Line 996 will run the shut_engineering_door function once 60 seconds have elapsed.

Line 997 will update the use_message variable.

Line 998 will display a message on the screen for the user so they know that the door is open for
60 seconds.

Lines 999 – 1000 will play the say_doors_open and doors sounds.

34. Press ENTER twice.

35. Type the code you see on Lines 1002 – 1016 of the screenshot below. Ensure your indentation,
punctuation, and line spacing match what is shown in the screenshot.

Line 1002 will check to see if the player is carrying or standing on item 68, which is a food pouch.
If this is true, the value of the energy variable will be set to 100 (Line 1003). Line 1004 will
update the use_message variable, and Line 1005 will remove the object from the player’s
inventory using the remove_object method. Line 1006 will execute the draw_energy_air
method, which we haven’t written yet.

Line 1008 will check to see if the suit_stitched and air_fixed variables are both set to True.

If this is true, Line 1009 will check to see if the value of the player’s current room is 31 and that
prop 20 is in room 31. If this is true, Line 1010 will execute the open_door function on prop 20
and Line 1011 will play the say_airlock_open sound. Finally, Line 1012 will display text on the
screen to tell the player that that the airlock is open.

Line 1013 will run to see if prop 20 is in room 31. This only checks the location of the prop, not
the location of the player, as Line 1009 did. If this is true, Line 1014 will remove the prop 20
from view by moving it to room 0. Line 1015 will play the say_airlock_open sound and Line 1016
will display text on the screen to tell the player that the airlock is open.

36. Press ENTER twice.

37. Type the code you see on Lines 1018 – 1037 of the screenshot below. Ensure your indentation,
line spacing, and punctuation match what is shown in the screenshot.

In the code above, we use a loop to go through all the items in the RECIPES list, and a new
recipe goes into the recipe list each time. We put the ingredients and combination object
numbers into variables to make the function easier to understand. Lines 1019 – 1021 assign the
item ingredients in the RECIPES list to different variables.

The program checks whether the player is carrying the first ingredient and standing on the
second one, or the other way around (Lines 1022 – 1025). If so, the use_message variable is
updated to tell them what they combined and what they made (Lines 1026 – 1028).

When the combined object is made, it usually replaces the ingredient objects. If one of the
objects is scenery instead of a prop, though, it remains in the game. So, the program checks
whether the item the player is on is a prop, and if so, its room number is set to 0, removing it
from the game. If it’s a prop, it’s also deleted from the room map for the current room (Lines
1029 – 1031).

The object that was being carried is removed from the player’s inventory (Line 1032), and the
newly created object is added to it (Line 1033).

Finally, Line 1034 plays the combine sound.

38. Press ENTER twice.

39. Type the code you see on Lines 1039 – 1048 of the screenshot below. Ensure your indentation,
punctuation, and line spacing match what is shown in the screenshot.

Line 1039 creates a new function called game_completion_sequence. We saw this function
called earlier when the player has won the game.

Line 1040 establishes the launch_frame variable as a global variable.

Line 1041 creates a new rect object at the location of 0, 150. The object is 800 pixels wide and
600 pixels tall.

Line 1042 draws the filled rectangle on the screen using the RGB color values of 128, 0, 0.

Line 1043 creates another rec object. Line 1044 turns this rect object into a clipping area.

Line 1046 begins a loop to draw the soil image at the appropriate y and x coordinates.

40. Press ENTER twice.

41. Type the code you see on Lines 1050 – 1062 of the screenshot below. Ensure your indentation
and punctuation match what is shown in the screenshot.

Line 1050 will increase the value of the launch_frame variable by 1.

Line 1051 will check to see if the launch_frame variable is less than 9. If this is true, the
appropriate image and shadow image will be drawn and the game_completion_sequence will
run every .25 seconds (Lines 1053 - 1054).

Otherwise, Line 1056 will clear the clipping area previously set. Lines 1057 – 1060 will draw text
on the screen to tell the player that their mission is complete. Lines 1061 and 1062 will play the
completion and say_mission_complete sounds.

42. Ensure that the “START” comment runs on Lines 1065 – 1067 of your code.

43. Go to File > Save to save your code.

Final Code:

