
Part 6
Space Mission Directions

1. Navigate out to the Google Classroom for this class.

2. Locate the Space Mission Part 6 assignment.

3. We are now ready to start adding code to our file. Using your Windows button menu, find and
launch your IDLE program.

IDLE is the integrated development environment associated with Python. It is made up of a code
editor where you type your code along with other helpful tools that allow you to write, save,
and test run programs.

IDLE is designed to recognize Python code, compile Python code, and provide basic debugging
tips to programmers if there are problems with their code.

4. Your IDLE window should look something like this once it has launched.:

On Startup, IDLE will display the Python Shell, which can be used to give commands to the
computer’s operating system. Since we are viewing the shell through IDLE and not the actual
command prompt window, the commands that we type into the Shell will not communicate
directly with our operating system. However, you can type similar commands in the Python Shell
directly from the Python program (not through IDLE) and, if you have permission to access the
operating system’s commands, you can communicate with the computer’s operating system
that way.

In IDLE, the shell is mainly used as a launching screen for other activities that we will do, like
writing code for our game or debugging a file.

5. Go to File > Open and then browse in the Starting Files folder I gave you to find the escape
python file that we have been working on.

6. Your escape.py file will open up.

7. Scroll and click at the end of Line 462.

8. Press ENTER twice.

9. Type the code you see on Lines 464 – 475 of the screenshot below. Ensure your indentation,
punctuation, and line spacing match what is shown in the screenshot.

In the new code, we start by setting up a loop to go through the items in the props dictionary,
which we haven’t created yet. For each item, the dictionary key goes into the variable
prop_number, and the list with the position information goes into the list prop_info (Line 464).

To make the program easier to read, I’ve set up some variables to store the information from
the prop_info list. The program extracts the information for the room number (and puts it into
prop_room variable on Line 465) and the y and x positions (which go into the prop_y and prop_x
variables on Lines 466 and 467).

We add a check to see whether the prop_room matches the room the player is in and whether
the prop is sitting on the floor (Lines 468 and 469). The floor check puts the three different floor
types in a list (0 for inside, 2 for soil, and 39 for the pressure pad in room 26). The program
checks the prop’s position to see what’s in that location in the room map. If it’s one of these
floor types, it means the object is sitting on the floor in full view. If not, the prop is hidden inside
an item of scenery and shouldn’t be visible yet. For example, if a cabinet is in the prop’s location
instead of the floor, the prop won’t be shown on screen. The player can still find the prop by
examining the vabinet at that location, though.

If the prop is in the room and on the floor, the room map is updated with the prop number (Line
470).

Lines 471 – 473 calculate the image and the size of the prop being used.

Some props, like doors, are wider than one tile. We add the number 255 to any tiles that the
prop covers other than the first one (Line 474). This is similar to the code we used to mark wide
scenery earlier in the generate_map() function.

10. Uncomment all of the start_room() functions by erasing the “#” at the beginning of each
comment (Lines 543, 553, 563, and 573). The uncommented code is shown in the screenshot
below.

11. Click at the end of Line 574.

12. Press ENTER twice.

13. Type the code you see on Lines 576 – 590 of the screenshot below. Ensure your indentation,
punctuation, and line spacing match what is being shown in the screenshot.

Line 576 checks to see if the g key on the keyboard has been pressed. If it has, Line 577 executes
the pick_up_object function.

Line 579 checks to see if the tab key has been pressed on the keyboard and the length of the
in_my_pockets list variable is greater than 0. If this is true, the selected_item variable (which we
haven’t created yet) will be increased by one (Line 580). Line 581 checks to see if the value of
the selected_item variable is greater than the length of the in_my_pockets list. If it is, than the
select_item variable will be reset back to 0 and the player will view the first item in the
in_my_pockets list again (the item with the index value of 0) (Line 582).

Line 583 will create the item_carrying variable and set its value to be equal to whatever item is
currently selected (the selected_item) from the in_my_pockets list.

Line 584 will run the display_inventory function, which we haven’t created yet.

Line 586 will check to see if the d key on the keyboard has been pressed and the item_carrying
variable is true. If both of these conditions are true, then the drop_object method will run (Line
587) using the old_player_y and old_player_x coordinates that the program saved. We haven’t
written the drop_object method yet.

Line 589 will check to see if the space key has been pressed on the keyboard.

Line 590 will run the examine_object function (which we haven’t written yet) if the space key
has been pressed on the keyboard.

14. Ensure the “#If the player is standing…” comment is on Line 593.

15. Scroll and click at the end of Line 719.

16. Press ENTER three times.

17. Type the code you see on Lines 723 – 742 of the screenshot below. Ensure your indentation,
punctuation, and line spacing matches what is shown in the screenshot.

Lines 723 – 725 create a new section of code called PROPS.

Lines 727 – 729 contain comments describing the props dictionary that you are about to create.

Lines 730 – 742 contains a listing of props that the player can manipulate in the game. They are
listed by prop number. Their coordinates include the room number they start out in and their y
and x positions. The props dictionary lists the position locations for all the props, starting with
some doors (20 to 24) and including a rescue ship (40) and the carryable items starting at 53.

There is just one oddity to draw your attention to. We count doors as props rather than scenery,
because they’re not always there: when they’re open, they’re removed from the room. Most
doors stay open when they’re opened until the game ends. However, the door that connects
rooms 27 and 32 can also shut, meaning players can see it from both sides. As a result, we need

two props to represent this door, showing it in the top of room 27 and the bottom of room 32.
These two doors are object numbers 25 and 26.

Prop 71 is the Poodle lander, which crash landed on the planet surface before the game began.
We use the LANDER_Y and LANDER_X variables from the VARIABLES section of code to position
the lander, because its location will change with each new game. The Poodle landed with such
force that it might have become covered with Martian soil. It lives in room 0 until the player can
dig it up.

18. Press ENTER twice.

19. Type the code you see on Lines 744 – 753 of the screenshot below. Ensure your indentation,
punctuation, and line spacing matches what is shown in the screenshot.

As with the scenery information, I’ve used a checksum on Lines 744 - 753 to help you spot
whether you made an error entering the data. It might not be possible to play the game all the
way to the end if a mistake is made here. The only prop missing from the checksum calculations
is number 71, because its position uses different random numbers in each game.

20. Press ENTER three times.

21. Type the code you see on Lines 756 – 758 of the screenshot below.

Line 756 creates a list variable called in_my_pockets. This variable stores all the items the player
has picked up, also known as their inventory.

One of these items is always selected, so the player is ready to do something with it. The
selected_item variable on Line 757 stores the currently selected item’s index number in the
in_my_pockets list.

The item_carrying variable (Line 758) stores the object number of the item the player has
selected. You can think of the item_carrying variable as being the number of the object in their
hands.

22. Press ENTER three times.

23. Type the code you see on Lines 761 – 774 of the screenshot below. Ensure your indentation, line
spacing, and punctuation matches what is shown in the screenshot.

Lines 761 – 763 create another section of the code called PROP INTERACTIONS.

Line 765 creates a mew method called find_object_start_x.

This function finds the start position of whatever object is at the player’s position, going left to
find the real object number if the location contains 255.

To do this, the function sets the variable checker_x to be the same as the player’s x position
(Lome 766). We use a loop that keeps going for as long as the room map contains 255 at the x
position of checker_x and at the player’s y position (Line 767). Inside that loop is a single
instruction to reduce checker_x by 1, moving 1 tile to the left (Line 768). When the loop finishes,
checker_x contains the left position where the object begins. That number is then sent back to
the instruction that started the function (Line 769).

Line 771 creates another new function called get_item_under_player.

This function works out which object is at the player’s position. Line 772 uses the
find_object_start_x to find out where the object starts and stores the x position in the variable
item_x. Then it looks at the room map data for that position to see what object is there (Line
773) and sends that number back to the instruction that started the function (Line 774).

24. Press ENTER twice.

25. Type the code you see on Lines 776 – 788 of the screenshot below. Ensure your indentation, line
spacing, and punctuation match what is being shown in the screenshot.

Line 776 creates another function called pick_up_object.

Line 777 establishes the room_map variable as a global variable so that the function can access
and modify it.

Line 778 contains a comment.

The function pick_up_object will start when the player presses the get key (G) to pick up an
item. It begins by running the get_item_under_player function to put the object number for the
item at the player’s position into the variable item_player_is_on (Line 779).

If the item is carryable, the rest of the function picks it up by clearing the floor space, figuring
out what the floor type should be, alerting the player that they are now carrying that particular
object, and playing a sound. It also runs the add_object function for the object in the
item_player_is_on variable, which we will create in the next few steps. Otherwise, it will display
a message telling the player that they cannot carry that object (Line 788).

26. Press ENTER twice.

27. Type the code you see on Lines 790 – 797 of the screenshot below. Ensure your indentation and
punctuation match what is shown in the screenshot.

Line 790 creates another function called add_object. This function would require the item to be
entered whenever it is called.

Line 791 establishes the select_item and item_carrying variables as global variables.

Line 792 appends whatever item the player is currently holding to the in_my_pockets list,
effectively adding that particular item to the player’s inventory.

Line 793 will set the value of the item_carrying variable to whatever item was just added.

Line 794 contains a comment.

Line 795 sets the index value of the selected_item variable to the length of the list minus 1,
which would be the last item in the list, or whatever item was just added.

Line 796 will run the display_inventory function, which we haven’t written yet.

Line 797 will remove that particular item’s image from the current room they are assigned and
move that item to room 0 so that the item is no longer visible on the map.

28. Press ENTER twice.

29. Type the code you see on Lines 799 – 820 of the screenshot below. Ensure your indentation,
punctuation, and line spacing match what is shown in the screenshot.

Line 799 creates a new function called display_inventory.

The new display_inventory function starts by drawing a black box over the inventory area to
clear it. If the player isn’t carrying anything, the function returns without taking any further
action because there are no items to display. (Lines 800 – 804)

There is only room to show 16 items on the screen, but the player could carry many more items
than that. If the in_my_pockets list is too long to fit on the screen, the program shows it 16
items at a time. The player can select any of the items shown on the screen by pressing the TAB
key to move through them, from left to right. If the last item displayed is selected and they press
TAB, the next chunk of the list is shown. If the player presses TAB on the final item in the list, the
start of the list appears again.

We store the part of the in_my_pockets list currently displayed on the screen in another list
called list_to_show and use a loop to display it. The loop puts numbers into a variable called
item_counter, which is used to extract the right image to draw each time, and also work out
where to draw it.

The clever bit is working out which items should go into list_to_show. In the start_display
variable, we store the index number for the first item in in_my_pockets that the program should
draw (Line 806). The // operator divides the select item number by 16, rounding down. The
result is then multiplied by 16 to get the index number for the first item in the batch. For
example, if the selected item is number 9, you’ll divide 9 by 16, round down, and then multiple
by 16, getting a result of 0. That’s the start of the list, which makes sense, because we know
there’s room for 16 items onscreen and that 9 is less than 16. If you wanted to see the group of
items that includes item 22, you’d divide 22 by 16, round down, and multiply by 16. That’s the
start of the next batch, because the first batch has index numbers that range from 0 to 15.

We create the list_to_show list (Line 807) using a technique called list slicing, which is simply
using just a part of a list. When you give Python two list indexes with a colon between them, the
program will cut out that part of the list. The section we’re using starts at the start_display index
and finishes 15 items later. A list slice leaves out the last item, so we use start_display + 16 as
the end point.

We also need another calculation to work out which item to highlight as the selected item from
the new list. The item will have an index between 0 and 15, and we’ll store it in selected_marker
variable (Lines 808). We calculate it as the remainder after we divide the selected item number
by 16. For example, if the selected item is number 18, it will be at index number 2 when the
second group of items is displayed. Python has the modulo operator %, which you can use to get
the remainder after a division.

As mentioned earlier, Lines 810 – 813 create a “for” loop to display the items in the
list_to_show list variable on the screen. This loop will loop through each item in the
list_to_show list to extract the proper image (Line 812) and to display the proper image at the
appropriate location (Line 813).

To highlight the selected item on the screen, we draw a box around it using a Rect positioned at
its left edge (Lines 815 – 816). Unlike the filled rectangle you’ve seen, this instruction draws a
hollow box with a white edge (Line 817).

Lines 818 – 820 extra information from the selected item to find its description in the objects
dictionary (the item with the index value of 2 from the objects dictionary). The description for
the selected item is displayed underneath the inventory, so players can TAB through their items
to read their descriptions again.

30. Press ENTER twice.

31. Type the code you see on Lines 822 – 835 of the screenshot below. Ensure your indentation and
punctuation match what is shown in the screenshot.

Line 822 creates a new function called drop_object. This function will require the old_y and
old_x variables to be entered when it is called.

Line 823 establishes the room_map and props variable as global variables.

The drop_object function needs two pieces of information: the player’s old y and x positions. If
the player moved through the wall function, this will be the position they were in before they
tried to move. If not, these numbers will be the same position as where they currently are. We
know this is a sensible place to drop an item that won’t put the object inside a wall. The player’s
old position goes into the variables old_y and old_x within this function.

The program checks whether the room map at the player’s old position is a type of floor (Line
824). If so, it’s okay to drop a prop here, so the drop instructions are used. If not, the player sees
a message telling them they can’t drop objects there (Line 833). This will happen, for example, if
there is already a prop in that position.

If the player can drop the item, we need to update the props dictionary. The variable
item_carrying contains the numbers of the object the player is carrying. Its entry in the props
dictionary is a list. The first list item (index 0) is the room the prop is in. Line 825 will update this
to the current room where the prop was dropped. The second item (index 1) is its y position,

and the third item is its x position (index 2). Lines 826 – 827 will update the y and x position of
the prop to be the player’s old position.

The room map for the current room also needs to be updated, so the room contains the
dropped item (Line 828). The game will show a message and play a sound to tell the player that
they’ve successfully dropped something and then the item is removed from the inventory using
the remove_object function (which we haven’t written yet) (Lines 829 – 831). The game will also
pause for half a second.

32. Press ENTER twice.

33. Type the code you see on Lines 837 – 847 of the screenshot below. Ensure your indentation and
punctuation match what is shown in the screenshot.

Line 837 creates a new function called remove_object. This function will require the item to be
input whenever it is called.

Line 838 makes the selected item, in_my_pockets variable list, and item_carrying variables into
global variables.

Line 839 uses the remove function to remove that particular item from the in_my_pockets list. If
the player has dropped the item, it needs to be removed from their inventory.

Line 840 will update the selected item variable by decreasing it by 1.

Line 841 will check to see if the selected_item variable’s value is less than 0. If so, Line 842 will
set the selected_item variable to 0.

Line 843 will check to see if the length of the in_my_pockets list is equal to 0. If this is true, Line
844 will set the value of the item_carrying variable to False because the player doesn’t have
anything in their inventory.

If neither of the above conditions are true (the selected_item variable’s value is more than 0 and
the in_my_pockets list is longer than 0), the item_carrying variable will be set to be equal to the
selected_item from the in_my_pockets list.

Line 847 will display the updated inventory on the screen using the display_inventory function.

34. Press ENTER twice.

35. Type the code you see on Lines 849 – 866 of the screenshot below. Ensure your indentation and
punctuation match what is shown in the screenshot.

Line 849 creates another function called examine_opbject.

We start by getting the number of the object the player wants to examine and storing it in
item_player_is_on variable (Line 850). At this point in the game_loop function, the player’s
position will be on or possibly inside the item they want to examine, if it’s a piece of scenery.
We use the find_object_start_x function to find the starting x position of the object and put the
starting x position of the item into the variable left_tile_of_item (Line 851). If there isn’t an
object to examine at the player’s location, the function finishes without taking any further
action (Lines 852 – 853). Ignoring an empty space feels more natural than describing the floor,
especially if you make a mistake with the controls. If there is an item at the player’s location, the
description of the object goes into the description variable, taken from the long description
from the objects dictionary (Line 854).

The program then checks whether there’s an item hidden inside the item the player is
examining. We use a loop to go through all the items in the props dictionary (Line 855). If an
item is in the current room at the player’s position, but the room map at that position doesn’t
contain the prop number, it means the item is hidden (Lines 857 – 861). We therefore add the
hidden object to the player’s inventory (Line 862) and give the player a message that tells them
they found something (Line 863). This message uses the object’s short description to tell them
what they’ve found. We also play a sound (Line 864).

At the end of the function, the description is shown (Line 865) and we’ve put a short pause here
(Line 866) to stop it being immediately overwritten if the player holds the key down.

36. Ensure the “START” comment runs on Lines 869 – 871 of the code.

37. Click at the end of Line 875.

38. Press ENTER.

39. Type the code you see on Line 876 of the screenshot below.

Line 876 uses the clock.schedule_unique function to run the display_inventory method just
once, after a delay of 1 second.

40. Go to File > Save to save your code.

Final Code:

