Part 6
Space Mission Directions

Navigate out to the Google Classroom for this class.
Locate the Space Mission Part 6 assignment.

We are now ready to start adding code to our file. Using your Windows button menu, find and
launch your IDLE program.

All AppS Documents

Best match

IDLE (Python 2.8 B4-hit)
App

search the web

B idie - see web results >

IDLE is the integrated development environment associated with Python. It is made up of a code
editor where you type your code along with other helpful tools that allow you to write, save,
and test run programs.

IDLE is designed to recognize Python code, compile Python code, and provide basic debugging
tips to programmers if there are problems with their code.

4. Your IDLE window should look something like this once it has launched.:

| & Python 3.2.6 Shell - O X
File Edit Shell Debug Options Window Help
Python 3.8.6 (tags/v3.8.6:db45529, Sep 23 2020, 15:52:53) [M5C v.1927 64 bit (&M

DE4)] on win32
Type "help"™, "copyright™, "credits"™ or "license ()" for more information.

2>

Ln:3 Cok4

On Startup, IDLE will display the Python Shell, which can be used to give commands to the
computer’s operating system. Since we are viewing the shell through IDLE and not the actual
command prompt window, the commands that we type into the Shell will not communicate
directly with our operating system. However, you can type similar commands in the Python Shell
directly from the Python program (not through IDLE) and, if you have permission to access the
operating system’s commands, you can communicate with the computer’s operating system

that way.

In IDLE, the shell is mainly used as a launching screen for other activities that we will do, like
writing code for our game or debugging a file.

Go to File > Open and then browse in the Starting Files folder | gave you to find the escape
python file that we have been working on.

[# escape 1172272021 8:34 AM Python File

Your escape.py file will open up.

Scroll and click at the end of Line 462.

443 if current room in ScCEnery:

444 for this scenery in scenery[current room] :
445 scenery number = this scenery[0]

] scenery ¥y = this scenery[l]

44 scenery X = this scenery[2]

£
I
o

44 5 room map[scenery y] [scenery x] = scenery number
450 image here = objects[scenery number] [0]
451 image width = image here.get_width()

452 image width in tiles = int (image width £ TILE STZE)

454 for tile number in range(l, image width in tiles):
45 C room map[scenery v][scenery X + tile number] = 255

£
r
el

45 center v = int (HEIGHT / 2) # Center of game window

458 center x = int (WIDTH / 2)

room pixel width = room width * TILE SIZE # Size of room in pixels
room pixel height = room height * TILE SIZE

top left ®x = center x - 0.5 * room pixel width

top left y = (center y - 0.5 * room pixel height) + llCl

Y O Y Y T
i
B b= & a on

GAME LOOP

s
1

U R T ST VT N AT N & 4]

Press ENTER twice.

Type the code you see on Lines 464 — 475 of the screenshot below. Ensure your indentation,
punctuation, and line spacing match what is shown in the screenshot.

457 center ¥ = int (HEIGHT / 2) # Center of game window

455 center x = int (WIDTH / 2)

455 room pixel width = room width * TILE STZE # S5ize of room in pixels
4 & room pixel height = room height * TILE S5TZE

461 top left ®x = center x — 0.5 * room pixel width

q62 top left v = (center ¥ — 0.5 * room pixel height) + 110

364 prop number, prop info props.items () :

465 prop room = prop info[0]

66 prop ¥ = prop info[l]

e=1s prop x = prop info[2]

468 (Prop room == CUrrent room

469 room map [prop v] [prop =] [0, 383, 21):

47 room map [prop v] [prop ®x] = prop nunber

471 image here = objects[prop number] [0]

472 image width = image here.get widch ()

473 image width in tiles = int(image width I TILE STIZE)
474 tile number range (1, image width in tiles):
475 room map [prop v] [prop ® + tile number] = 25ﬂ

4TE | FEFRFAAAAAAAASS
4749| #% GRME LOOP ##

10| FRFAATAAFAAAA AN

In the new code, we start by setting up a loop to go through the items in the props dictionary,
which we haven’t created yet. For each item, the dictionary key goes into the variable
prop_number, and the list with the position information goes into the list prop_info (Line 464).

To make the program easier to read, I've set up some variables to store the information from
the prop_info list. The program extracts the information for the room number (and puts it into
prop_room variable on Line 465) and the y and x positions (which go into the prop_y and prop_x
variables on Lines 466 and 467).

We add a check to see whether the prop_room matches the room the player is in and whether
the prop is sitting on the floor (Lines 468 and 469). The floor check puts the three different floor
types in a list (0 for inside, 2 for soil, and 39 for the pressure pad in room 26). The program
checks the prop’s position to see what’s in that location in the room map. If it’s one of these
floor types, it means the object is sitting on the floor in full view. If not, the prop is hidden inside
an item of scenery and shouldn’t be visible yet. For example, if a cabinet is in the prop’s location
instead of the floor, the prop won’t be shown on screen. The player can still find the prop by
examining the vabinet at that location, though.

If the prop is in the room and on the floor, the room map is updated with the prop number (Line
470).

Lines 471 — 473 calculate the image and the size of the prop being used.

Some props, like doors, are wider than one tile. We add the number 255 to any tiles that the
prop covers other than the first one (Line 474). This is similar to the code we used to mark wide
scenery earlier in the generate_map() function.

. Uncomment all of the start_room() functions by erasing the “#” at the beginning of each
comment (Lines 543, 553, 563, and 573). The uncommented code is shown in the screenshot
below.
check for exiting the room
if player x == room width: # through door onm RIGHT
53 #c;uck.::schedz;e(haza:d_mnve]
current room += 1
generate map)
540 player x = 0 # enter at left
541 player v = int(room height / 2) # enter at doox
542 player frame = O
543 Start roomi)

r
oyoon

r
[Ta e

54e if player x == -1: # through door om LEFT

547 #c;uck.::schedz;e(haza:d_mnve]

S48 current room -= 1

545 generate map)

550 player ®x = room width - 1 # enter at right

551 player v = int(room height / 2) # enter at doox
552 player frame = O

553 Start roomi)

r
r
o

if player y == room height: # through door at BOTTOM
55 #c;uck.::schedz;e(haza:d_mnve]

S5E current room += MAP WIDTH

555 generate map)

player ¥y = O # enter at top

player x = int(room width / 2) # enter at doox
player frame = O

Start roomi)

[

& if player y == -1: # through door at TOP
#c;uck.::schedz;e(haza:d_mnve]

8 current room -= MAP WIDTH

S generate map)

570 player ¥ = room height - 1 # enter at bottom
571 player x = int(room width / 2) # enter at doox
2 player frame = O

573 start roomi)

L ST i TN i T T T T Y Y L i &]

11. Click at the end of Line 574.

noen onotnononoen ogn
[SN A R S T T TR T TR TS I S
ok | [T T & S B I o 3 |

243
o244
245
246
247
248
249
250
251
252
253
254
253
256
257

tnoenogn
e I I
s L B = D

check for exiting the room

if player ®x == room width: # through door on RIGHT
#cluck.unschedule(haza:d_muve]
current _room += 1
generate map ()
player x = 0 # enter at left
player ¥ = int(room height / 2) # enter at door
player frame = 0
start_room()

return

if player x = -1: # through door on LEFT
#cluck.unschedule(haza:d_muve]
current _room -= 1

generate map ()

player x = room width - 1 # enter at right
player ¥ = int(room height / 2) # enter at door
player frame = 0

start_room()

return

if player y == room height: # through door at BOTTOM
#cluck.unschedule(haza:d_muve]
current room += MAP WIDTH
generate map ()
player v = 0 # enter at top
player x = int(room width / 2) # enter at door
player frame = 0
start_room()
return

£

if player y = -1: # through door at TOP
#cluck.unschedule(haza:d_muve]
current room —= MAP WIDTH
generate map ()
player v = room height - 1 # enter at bottom
player x = int(room width / 2) # enter at door
player frame = 0
start roomi()

return

12. Press ENTER twice.

13.

Type the code you see on Lines 576 — 590 of the screenshot below. Ensure your indentation,
punctuation, and line spacing match what is being shown in the screenshot.
566 player y = -1: # through door at TOP
#c;ack.:nsched:;e[haza:d_mﬂ?ej
current room —= MAP WIDTH
generate_map ()

57 player ¥ = room height - 1 # enter at bottom
571 player x = int(room width / Z) # enter at door
572 player frame = 0

start_room|)

keyvboard.g:
pick _up object()

57 keyboard.tab len(in my pockets) > 0O:

3 selected item += 1

581 selected item > len(in_my pockets) - 1:
582 selected item = 0

583 item carrying = in my pockets[selected item]

B4 display inventory()

586 keyboard.d item carrying:
drop obkject (old_player vy, old player x)

kevboard. space:
Examine_nbject(ﬂ

c # If the playver is standing somewhere they shouldn't, move them back.
54 room map[player v] [plaver x] items player may stand on: #

Line 576 checks to see if the g key on the keyboard has been pressed. If it has, Line 577 executes
the pick_up_object function.

Line 579 checks to see if the tab key has been pressed on the keyboard and the length of the
in_my_pockets list variable is greater than 0. If this is true, the selected_item variable (which we
haven’t created yet) will be increased by one (Line 580). Line 581 checks to see if the value of
the selected_item variable is greater than the length of the in_my_pockets list. If it is, than the
select_item variable will be reset back to 0 and the player will view the first item in the
in_my_pockets list again (the item with the index value of 0) (Line 582).

Line 583 will create the item_carrying variable and set its value to be equal to whatever item is
currently selected (the selected_item) from the in_my_pockets list.

Line 584 will run the display_inventory function, which we haven’t created yet.

Line 586 will check to see if the d key on the keyboard has been pressed and the item_carrying
variable is true. If both of these conditions are true, then the drop_object method will run (Line
587) using the old_player_y and old_player_x coordinates that the program saved. We haven’t
written the drop_object method yet.

Line 589 will check to see if the space key has been pressed on the keyboard.

Line 590 will run the examine_object function (which we haven’t written yet) if the space key
has been pressed on the keyboard.

. Ensure the “#If the player is standing...” comment is on Line 593.

. Scroll and click at the end of Line 719.

12| def show text(text to show, line number):
13 if game over:

15 text lines = [13, 30]

1& box = Rect ((0, text lines[line numker]), (800, 33})
1 screen.draw.filled rect (box, BLACK)

18 screen.draw.TeXt (LexXt_to show,

15 (20, text lines[linse number]), CDlDI=GREENﬂ

T23| #EFREFEFA 444444
T24| ## START ##
T25| #FFREFEFA444444

. Press ENTER three times.

17.

Type the code you see on Lines 723 — 742 of the screenshot below. Ensure your indentation,
punctuation, and line spacing matches what is shown in the screenshot.

712|def show text(text_to show, line number):

13 if game over:

15 text limezs = [15, 50]

1k box = Rect ((0, text_ linez[line number]), (800, 35))
1 screen.draw.filled rect (box, BLACK)

11 screen.draw. text (text _to_ show,

715 (20, text lines[line number]), color=GREEN)

T23| FEFRFAATAAAAAAS

TZ4| % PROPS ¥

T25 | FEFRFAATAAAAAAS

T27| # Props are ohjects that may move between rooms, appear or disappear.
TZ22| # Rll props must be set up here. Props not vet in the game go into room 0.
T249| # object number : [room, ¥V, %]

T30|props = {

731 20: [21, O, 4], 21: [2e, O, 1], 22: [41, 0O, 2], 23: [35, O, 5],
T32 24: [45, O, 2],

T33 25: [32, 0, 21, 26: [27, 12, 5], # two 3ides of same door

734 4g: [0, 8, &), 53: [45, 1, 5], 54: [O, O, O}, 55: [0, O, O],

735 5§: [0, O, O], 57: [35, 4, &1, 58: [0, O, O], 59: [31, 1, 71,
736 go0: [0, O, O], €l: [3&, 1, 11, €2: [36, 1, &1, €3: [0, O, 01,
737 €4: [27, &, 3], 65: [50, 1, 71, 66: [39, 5, €], €7: [46, 1, 11,
738 €s: [0, O, O], €%: [30, 3, 31, TO0: [47, 1, 31,

739 71: [0, LANDER Y, LANDER X], 72: [0, O, O], 73: [27, 4, &I,

740 74: [28, 1, 111, 75: [0, O, 0], Té: [41, 3, 51, 77: [0, O, O],
741 78: [35, ®, 11], 79: [26, 3, 21, 80: [41, 7, 51, B1: [29, 1, 1]

7a5| $HEREEREREFETES
T4E| % START i
47| $HEREERERERETES

Lines 723 — 725 create a new section of code called PROPS.
Lines 727 — 729 contain comments describing the props dictionary that you are about to create.

Lines 730 — 742 contains a listing of props that the player can manipulate in the game. They are
listed by prop number. Their coordinates include the room number they start out in and theiry
and x positions. The props dictionary lists the position locations for all the props, starting with
some doors (20 to 24) and including a rescue ship (40) and the carryable items starting at 53.

There is just one oddity to draw your attention to. We count doors as props rather than scenery,
because they’re not always there: when they’re open, they're removed from the room. Most
doors stay open when they’re opened until the game ends. However, the door that connects
rooms 27 and 32 can also shut, meaning players can see it from both sides. As a result, we need

two props to represent this door, showing it in the top of room 27 and the bottom of room 32.
These two doors are object numbers 25 and 26.

Prop 71 is the Poodle lander, which crash landed on the planet surface before the game began.
We use the LANDER_Y and LANDER_X variables from the VARIABLES section of code to position
the lander, because its location will change with each new game. The Poodle landed with such
force that it might have become covered with Martian soil. It lives in room 0 until the player can
dig it up.

18. Press ENTER twice.

. Type the code you see on Lines 744 — 753 of the screenshot below. Ensure your indentation,

punctuation, and line spacing matches what is shown in the screenshot.
TZ3| FFRFFFIFAATAARS

TZ24| #% PROPS 77

TIS| FFRFFFFIAAIAASS

T26
T27| % Props are ockbjects that may move between rooms, appear or disappear.
TZ8| # All props mast be set up here. Props not yvet in the game go into room 0.
TZ249| # object number : [room, ¥V, X]

T30 props = {

T3l 20: [31, O, 4], 21: [2e, O, 1], 22: [41, O, 21, 23: [35, 0O, 3],
T332 24: [45, O, 21,

733 25: [32, 0, 21, 26: [27, 12, 5], # two sides of same door

T34 40Q: [0, &, &], 53: [45, 1, 5], 54: [0, ©, O], 55: [0, O, O],
T35 se: [0, O, O], 57: [35, 4, &], 58: [0, O, O], 5%: [31, 1, 7],
T3 eQ: [O, O, O], &1: [3e&, 1, 1], &2: [36, 1, &], &3: [0, O, O],
T37 e4: [27, &, 3], &5: [50, 1, 7], &&: [39, 5, &1, &7: [4&6, 1, 1],
T38 &g8: [0, O, 0], &5: [30, 3, 31, 70O: [47, 1, 3],

T3 71: [0, LANDER Y, LAWDER X], 72: [0, O, O], 73: [27, 4, €],

740 74: [28, 1, 11}, 75: [0, O, O], T7&: [41, 3, 51, TT7: [0, O, O],
741 T78: [35, &, 111, T9: [2e&, 3, 2], B80O: [41, 7, 51, 81l: [28, 1, 1]
742 }

44| checksum = 0

745 for key, prop in props.items():

T46 if key '= T71l: # 71 iz =skipped because it's different each game.
4 checksum += (prop[0] * kevy

48 + prop[l] * (key + 1)

749 + prop[2] * (key + 2))

T750| print (len(props), "props"™)

75l az=sert len({props) = 37, "Expected 37 prop items"
T52| print ("Prop checksum:", checksum)

753 asz=sert checksum == £1414, "Error in props data"™

6| HEEEEEEEEREEEES
57| ## STLRT ##
753 | $EEREREEREEHE

As with the scenery information, I've used a checksum on Lines 744 - 753 to help you spot
whether you made an error entering the data. It might not be possible to play the game all the
way to the end if a mistake is made here. The only prop missing from the checksum calculations
is number 71, because its position uses different random numbers in each game.

. Press ENTER three times.

21.

22.

Type the code you see on Lines 756 — 758 of the screenshot below.

744 | checksum = O

745 for key, prop in props.items () :

T46 if key '= T71: # 71 iz skipped because it's different sach game.

4 checksum += (prop[0] * key

48 + prop[l] * (key + 1)
S + propl[2] * (key + 2))
J| print (len (props), "props™)

T75l) assert len(props) — 37, "Expected 37 prop items"”
752 print ("Prop checksum: "™, checksum)

753 assert checksum =— £1414, "Error in props data"
756 in_my pockets = [35]

57| selected item 0 # the first item
item carrying = in_my_pnckets[selected_itemﬂ

TEL| #FFFFFFFFFFFFAF
TEZ| ## STLET FF
TE3| FFFFFFFFFFFIAAR

Line 756 creates a list variable called in_my_pockets. This variable stores all the items the player

has picked up, also known as their inventory.
One of these items is always selected, so the player is ready to do something with it. The
selected_item variable on Line 757 stores the currently selected item’s index number in the

in_my_pockets list.

The item_carrying variable (Line 758) stores the object number of the item the player has

selected. You can think of the item_carrying variable as being the number of the object in their

hands.

Press ENTER three times.

23. Type the code you see on Lines 761 — 774 of the screenshot below. Ensure your indentation, line
spacing, and punctuation matches what is shown in the screenshot.

in my pockets = [53]
57| selected item 0 # the first item
S8|iten carrying = in my pockets[selected item]

Ol R FFFRRFFFFAAFAFAARFRFR
TEZ| #% PROFP INTERACTICHS ##
| R FFFRARAAFAAFAARARFRFR

find object start x(}:
checker x = player x
room map[player y] [checker x] == 2Z55:
checker x —= 1
checker x

1 get_item under plaver():

2 item x = find object_start _x({)

E item player is on = room map[player y] [item x]
4 item player is oI

#F STLRT #F
TH FRFFFFRTFAFAFFT

Lines 761 — 763 create another section of the code called PROP INTERACTIONS.

Line 765 creates a mew method called find_object_start_x.

This function finds the start position of whatever object is at the player’s position, going left to
find the real object number if the location contains 255.

To do this, the function sets the variable checker_x to be the same as the player’s x position
(Lome 766). We use a loop that keeps going for as long as the room map contains 255 at the x
position of checker_x and at the player’s y position (Line 767). Inside that loop is a single
instruction to reduce checker_x by 1, moving 1 tile to the left (Line 768). When the loop finishes,
checker_x contains the left position where the object begins. That number is then sent back to
the instruction that started the function (Line 769).

Line 771 creates another new function called get_item_under_player.

This function works out which object is at the player’s position. Line 772 uses the
find_object_start_x to find out where the object starts and stores the x position in the variable
item_x. Then it looks at the room map data for that position to see what object is there (Line
773) and sends that number back to the instruction that started the function (Line 774).

24.

25.

26.

Press ENTER twice.

Type the code you see on Lines 776 — 788 of the screenshot below. Ensure your indentation, line
spacing, and punctuation match what is being shown in the screenshot.

TT7l|def get _item under player():

2 item x = find object_start = ()

E item player is on = room map[player y] [item x]
q return item player is on

def pick up okject():
glokal room map
Get object number at plaver's location.
item player is on = get item under playerx ()
if item player is on in items player may Carry:
51 # Clear the floor space.
52 room map[player vy] [player x] = get _floor type()
E add okject (item player is on)
54 show_text ("Now carrying " + objects[item player is on] [3], 0)
= sounds.pickup.playi()
o time.sleep (0.5)

show_text ("You can't carry that!", 0)

DZ| RAFRAARAARAANAS

Se| FEFAAAAATATATTN
Line 776 creates another function called pick_up_object.

Line 777 establishes the room_map variable as a global variable so that the function can access
and modify it.

Line 778 contains a comment.

The function pick_up_object will start when the player presses the get key (G) to pick up an
item. It begins by running the get_item_under_player function to put the object number for the
item at the player’s position into the variable item_player_is_on (Line 779).

If the item is carryable, the rest of the function picks it up by clearing the floor space, figuring
out what the floor type should be, alerting the player that they are now carrying that particular
object, and playing a sound. It also runs the add_object function for the object in the
item_player_is_on variable, which we will create in the next few steps. Otherwise, it will display
a message telling the player that they cannot carry that object (Line 788).

Press ENTER twice.

. Type the code you see on Lines 790 — 797 of the screenshot below. Ensure your indentation and
punctuation match what is shown in the screenshot.

def pick up object():
rlobal room map
Get object number at plaver's location.
S item player is on = get_item under player ()
[if item player is on in items player may Carry:
B1 # Clear the floor space.
52 room map[plaver y] [player x] = get_floor type()
E add object (item player is on)
54 show_text ("Now carrying " + objects[item player is omn] [3], 0)
5 sounds.pickup.plavi()
time.sleep (0.5)

show_text ("You can't carry that!", 0)

90| def add object (item): # Ldds item to inventory.

S1 rlokbal selected item, item carrying

S2 in my pockets.append (item)

93 item carrying = item

54 # Minus one because indexes start at 0.

S5 selected item = len(in my pockets) - 1

SE display inventory ()

S props[item] [0] = 0 # Carried objects go into room O [(off the mapj]

300| $##EFEEEEEREFEE
01| ## STAET ##
302| $##EFEEEEFREFEE

Line 790 creates another function called add_object. This function would require the item to be
entered whenever it is called.

Line 791 establishes the select_item and item_carrying variables as global variables.

Line 792 appends whatever item the player is currently holding to the in_my_pockets list,
effectively adding that particular item to the player’s inventory.

Line 793 will set the value of the item_carrying variable to whatever item was just added.
Line 794 contains a comment.

Line 795 sets the index value of the selected_item variable to the length of the list minus 1,
which would be the last item in the list, or whatever item was just added.

Line 796 will run the display_inventory function, which we haven’t written yet.

Line 797 will remove that particular item’s image from the current room they are assigned and
move that item to room 0 so that the item is no longer visible on the map.

28. Press ENTER twice.

29. Type the code you see on Lines 799 — 820 of the screenshot below. Ensure your indentation,
punctuation, and line spacing match what is shown in the screenshot.
props[item] [0] = 0 # Carried objects go into room O (off the map) .

def display inventory(}:
box = Rect (0, 45), (800, 105))
501 screen.draw.filled rect (box, EBLACK)

if len({in my pockets) == 0:

start display = (selected item // 16) * 1€
list to_show = in my pockets[start display : start_display + 1€]
selected marker = selected item % 16

B1C for item counter in range (len(list to show)):
511 item number = list to show[item counter]
512 image = objects[item number] [O]

§13 screen.blit (image, (25 + (46 * item counter), %0))

B1E box left = (selected marker * 46) - 3
B1& box = Rect((22 + box lefr, 85), (40, 40})
81 screen.draw.rect (box, WHITE)

B18 item highlighted = in my pockets[selected item]

515 description = cobjects[item highlighted] [2]

B2 screen.draw.text (description, (20, 130), cnlDI="wh;:%"ﬂ
23| FERRRRRAAAAAAAF

324 #4 STLRET i

CZE| FERRAAAAAAAAAAT

Line 799 creates a new function called display_inventory.

The new display_inventory function starts by drawing a black box over the inventory area to
clear it. If the player isn’t carrying anything, the function returns without taking any further
action because there are no items to display. (Lines 800 — 804)

There is only room to show 16 items on the screen, but the player could carry many more items
than that. If the in_my_pockets list is too long to fit on the screen, the program shows it 16
items at a time. The player can select any of the items shown on the screen by pressing the TAB
key to move through them, from left to right. If the last item displayed is selected and they press
TAB, the next chunk of the list is shown. If the player presses TAB on the final item in the list, the
start of the list appears again.

We store the part of the in_my_pockets list currently displayed on the screen in another list
called list_to_show and use a loop to display it. The loop puts numbers into a variable called
item_counter, which is used to extract the right image to draw each time, and also work out
where to draw it.

The clever bit is working out which items should go into list_to_show. In the start_display
variable, we store the index number for the first item in in_my_pockets that the program should
draw (Line 806). The // operator divides the select item number by 16, rounding down. The
result is then multiplied by 16 to get the index number for the first item in the batch. For
example, if the selected item is number 9, you'll divide 9 by 16, round down, and then multiple
by 16, getting a result of 0. That’s the start of the list, which makes sense, because we know
there’s room for 16 items onscreen and that 9 is less than 16. If you wanted to see the group of
items that includes item 22, you’d divide 22 by 16, round down, and multiply by 16. That’s the
start of the next batch, because the first batch has index numbers that range from 0 to 15.

We create the list_to_show list (Line 807) using a technique called list slicing, which is simply
using just a part of a list. When you give Python two list indexes with a colon between them, the
program will cut out that part of the list. The section we’re using starts at the start_display index
and finishes 15 items later. A list slice leaves out the last item, so we use start_display + 16 as
the end point.

We also need another calculation to work out which item to highlight as the selected item from
the new list. The item will have an index between 0 and 15, and we'll store it in selected_marker
variable (Lines 808). We calculate it as the remainder after we divide the selected item number
by 16. For example, if the selected item is number 18, it will be at index number 2 when the
second group of items is displayed. Python has the modulo operator %, which you can use to get
the remainder after a division.

As mentioned earlier, Lines 810 — 813 create a “for” loop to display the items in the
list_to_show list variable on the screen. This loop will loop through each item in the
list_to_show list to extract the proper image (Line 812) and to display the proper image at the
appropriate location (Line 813).

To highlight the selected item on the screen, we draw a box around it using a Rect positioned at
its left edge (Lines 815 — 816). Unlike the filled rectangle you’ve seen, this instruction draws a
hollow box with a white edge (Line 817).

Lines 818 — 820 extra information from the selected item to find its description in the objects
dictionary (the item with the index value of 2 from the objects dictionary). The description for
the selected item is displayed underneath the inventory, so players can TAB through their items
to read their descriptions again.

30. Press ENTER twice.

31. Type the code you see on Lines 822 — 835 of the screenshot below. Ensure your indentation and
punctuation match what is shown in the screenshot.
B15 box left = (selected marker * 46) - 3
316 box = Rect((22 + box left, 83), (40, 40})
B1 screen.draw.rect (box, WHITE)
318 item highlighted = in my pockets[selected item]
315 description = cobjects[item highlighted] [2]
B2C screen.draw.text (description, (20, 130), color="whitce")

322 drop okject(old vy, old x}:
B23 room map, props

324 room map[old y] [old x] [0, 2, 38]: # places you can drop things
325 props[item carrying] [0] = current room

326 props[item carrying][1] = old ¥

327 props[item carrying] [2] = old x

28 room map[old y][old x] = item carrying

325 show_text ("You have dropped " + objects[item carrying] [3], O)

sounds.drop.playl()
331 remove object (item carrying)
332 time.slesep(0.5)
33 # Thiz only happens if there is already a prop here
334 show_text ("You can't drop that there.", 0)
535 time.slesp (0.5}

30| ## START %

SA0| FFFRFFARFFARAAA

Line 822 creates a new function called drop_object. This function will require the old_y and
old_x variables to be entered when it is called.

Line 823 establishes the room_map and props variable as global variables.

The drop_object function needs two pieces of information: the player’s old y and x positions. If
the player moved through the wall function, this will be the position they were in before they
tried to move. If not, these numbers will be the same position as where they currently are. We
know this is a sensible place to drop an item that won’t put the object inside a wall. The player’s
old position goes into the variables old_y and old_x within this function.

The program checks whether the room map at the player’s old position is a type of floor (Line
824). If so, it’s okay to drop a prop here, so the drop instructions are used. If not, the player sees
a message telling them they can’t drop objects there (Line 833). This will happen, for example, if
there is already a prop in that position.

If the player can drop the item, we need to update the props dictionary. The variable
item_carrying contains the numbers of the object the player is carrying. Its entry in the props
dictionary is a list. The first list item (index 0) is the room the prop is in. Line 825 will update this
to the current room where the prop was dropped. The second item (index 1) is its y position,

32.

33.

and the third item is its x position (index 2). Lines 826 — 827 will update the y and x position of
the prop to be the player’s old position.

The room map for the current room also needs to be updated, so the room contains the
dropped item (Line 828). The game will show a message and play a sound to tell the player that
they’ve successfully dropped something and then the item is removed from the inventory using
the remove_object function (which we haven’t written yet) (Lines 829 — 831). The game will also
pause for half a second.

Press ENTER twice.

Type the code you see on Lines 837 — 847 of the screenshot below. Ensure your indentation and
punctuation match what is shown in the screenshot.

22| def drop object(old y, old x):

523 ylobal room map, props

524 if room map[cld vy][old x] in [0, 2, 39]: # places vyvou can drop things
525 props[item carrying] [0] = current_room

526 props[item carrying] [1] = old ¥y

527 props[item carrying] [2] = old =

528 room map[ocld v] [old x] = item carrying

529 show_text ("You have dropped " + objects[item carrying] [3]. 0)
30 sounds.drop.play ()
531 remove object (item carrying)
532 time.sleep (0.5)
- glze: # This only happens if there is already a prop here
534 show_text ("You can't drop that there.", 0)
535 time.sleep (0.5)

def remove object (item) : # Takes item out of inventory
ylokbal selected item, in my pockets, item carrying
539 in my pockets.remove (item)

§4C selected item = selected item - 1

541 if selected item < 0:

542 selected item = 0

543 if len(in my pockets) == 0: # If they're not carrving anvthing
544 item carrying = False % Setc item carrying to False

545 glse: # Otherwise set it to the new selected item
546 item carrying = in my pockets[selected item]
54 display_inventury(ﬂ

SSO| #FFRFFRFRRRANNR
S51| #% START ##
SOZ| #EFRRERRERRARER

Line 837 creates a new function called remove_object. This function will require the item to be
input whenever it is called.

Line 838 makes the selected item, in_my_pockets variable list, and item_carrying variables into
global variables.

Line 839 uses the remove function to remove that particular item from the in_my_pockets list. If
the player has dropped the item, it needs to be removed from their inventory.

Line 840 will update the selected item variable by decreasing it by 1.

Line 841 will check to see if the selected_item variable’s value is less than 0. If so, Line 842 will
set the selected_item variable to 0.

Line 843 will check to see if the length of the in_my_pockets list is equal to 0. If this is true, Line
844 will set the value of the item_carrying variable to False because the player doesn’t have
anything in their inventory.

If neither of the above conditions are true (the selected_item variable’s value is more than 0 and
the in_my_pockets list is longer than 0), the item_carrying variable will be set to be equal to the
selected_item from the in_my_pockets list.

Line 847 will display the updated inventory on the screen using the display_inventory function.

34. Press ENTER twice.

35. Type the code you see on Lines 849 — 866 of the screenshot below. Ensure your indentation and
punctuatlon match what is shown in the screenshot.

def remove cbject (item) : # Takes item out of inventory

slokal selected item, in my pockets, item carrying
in my pockets.remove (item)

selected item = selected item - 1

if selected item < O:
selected item = 0

if len(in my pockets) == 0O: # If they're not carrying anything
item carrying = False # Set item carrying to False

else: # Otherwise set it to the new selected item
item carrying = in my pockets([selected item]
display inventory()

C examine object():

item player is on = get_item under player|)
left tile of item = find object start x()

if item player is on in [0, 2Z]: # don't describe the floor
description = "You sse: " + objects[item player is on] [2]
for prop number, details in props.items():
props = obhject number: [room number, VvV, X]
if details[0] == current_ room: # if prop is in the room
If prop iz hidden (= at player's location but not on map)
if (details[l] == player_¥
tol details[2] == left_tile of item
1ol room map[details[1]] [details[2]] !'= prop number):
add object (prop number)
description = "You ound "+ objects[prop _number] [3]

sounds.conkbine.play ()
show_text (description, 0)
time.sleepiO.EH

o| ppssEsssEEsEEes

STAET F

Tl #FFFrraaraaaass

Line 849 creates another function called examine_opbject.

We start by getting the number of the object the player wants to examine and storing it in
item_player_is_on variable (Line 850). At this point in the game_loop function, the player’s
position will be on or possibly inside the item they want to examine, if it’s a piece of scenery.
We use the find_object_start_x function to find the starting x position of the object and put the
starting x position of the item into the variable left_tile_of item (Line 851). If there isn’t an
object to examine at the player’s location, the function finishes without taking any further
action (Lines 852 — 853). Ignoring an empty space feels more natural than describing the floor,
especially if you make a mistake with the controls. If there is an item at the player’s location, the
description of the object goes into the description variable, taken from the long description
from the objects dictionary (Line 854).

The program then checks whether there’s an item hidden inside the item the player is
examining. We use a loop to go through all the items in the props dictionary (Line 855). If an
item is in the current room at the player’s position, but the room map at that position doesn’t
contain the prop number, it means the item is hidden (Lines 857 — 861). We therefore add the
hidden object to the player’s inventory (Line 862) and give the player a message that tells them
they found something (Line 863). This message uses the object’s short description to tell them
what they’ve found. We also play a sound (Line 864).

At the end of the function, the description is shown (Line 865) and we’ve put a short pause here
(Line 866) to stop it being immediately overwritten if the player holds the key down.

36. Ensure the “START” comment runs on Lines 869 — 871 of the code.
7| def remove object (item): # Takes item out of inventory
slokal selected item, in my pockets, item carrying

B35 in my pockets.remove (item)

540 selected item = selected item - 1

541 if selected item < O:

542 selected item = 0

543 if len(in my pockets) == 0O: # If they're not carrving anvthing
544 item carrying = False # Set item carrying to False

545 =lze: § Otherwisze =et it to the new selected item
546 item carrying = in my pockets[selected item]
54 display inventory|()

249| def examine object():
550 item player is on = get_item under player()
8551 left tile of item = find okject_start_x()

552 if item player is on in [0, 2]: # don't descrike the floor
BS54 description = "You =ee: " + objects[item player is on] [2]
555 for prop number, details in props.items():
BSE # props = obhject number: [room number, Vv, X]
8557 if details[0] == current_ room: # if prop is in the room
B5H # If prop is hidden (= at player's location but not on map)
559 if (details[l] == player_¥
o il details[2] = left _tile of item
Bel and room map[details[l]] [details([2]] != prop number):
BE2 add okject (prop number)
D description = "You ound "+ objects[prop _number] [3]

564 sounds.combine.plav()
BE5 show_text (description, 0)
time.sleep(O.EH

S|
3T0| ## STARET ##
ST1| $EEEEEEEEEEEEE

37.

38.

39.

40.

Click at the end of Line 875.
DED| RRERATAAAAEAAES
870| #% STRET ¥#
ETL| RRFRATRARAEAAES
273| generate_map ()

£74| clock.schedule interval (game loop, 0.03)
275| clock.schedule _interval (adjust_wall transparency, 0.0EH

Press ENTER.

Type the code you see on Line 876 of the screenshot below.
CED| FFFFFFFFFFIIIES
870 #% START *#
ETL| #FFFFFFFFFFFFS

273 generate_map ()

274| clock.schedule interval (game loop, 0.03)

275 clock.schedule interwval (adjust _wall transparency, 0.03)
27€| clock.schedule unique (display inventory, J.]I

Line 876 uses the clock.schedule_unique function to run the display_inventory method just
once, after a delay of 1 second.

Go to File > Save to save your code.

Final Code:

<[* Eavape

| 12wipER_sEoToR = rasdon. zendintil, B4
LENDER X = randce. rasding(t,. 11)
LRNCERTT = andze_casdins (2,

3
|TIE sIIE = 30

defe 1,
1efc 3,

signe s,
images. spacesuit m;m: a, tmagea. apacesdit_Tight %,
images. spacesnit_ragnt

1z

: 15 Bac, 1 ik Back L,
e

k|
images.spsosauic_baok 4

lunnn spacesuit froac, images.spageacit fvonc 1,
rroat 2zenc 3,

u.n-.-p-:--.m. Eroms

1

|
| stmgus dhrectiug = e

|Playaz_zame = 0

| T _image = ELATTR[pleyes : u.:-ct:l:m] Ipiaver frame]
|pleyer_offsec u, player offsst y =

ac_iaere_smadow, &
tnages, apacesais_left I_shudow, images,zpacessis_left 3 shadow.
mages, apactmait_left 3 shadod

e,

1o
{images. apacsealr s xl-mu hadow, imiged.apasdEaic_right ! ahadmo,

3 st _back L sragow,
1 AT_back_1 mnw, L _baTk_3_stadow,

st frome shadow, o & ez
imssges.opacesals_fromt 3 ahsdov, inages,spacesuls_t xmm 3 -nano\-.
msges, apsoesin_front_3_ahadow

i

RED = (128, &, 2}

MAF_SIZE = m BIDTH ¢ MAE_HETGHT

BAHE KAE = [{"Roim 0 - ubers uniesd obiec

usgTT, 6,0,

setdscs_rosm = zange(l, 2t
= planecaectora tn razgell, 26
GRME_MRE.append([*Toe O

roows 1 to'IE ate gessrated hers
= mur =} 1

CRE_MRE - |

#["Eodm nawe®, E=ight, widuh, Top exitl. EighT emic
e

[FTee vicwing pallery®, % 15,
snrdast) & K, fa

e nFe-uu' 13 1,
T Lyl gt e
[eToe. Fubie sarkunapss. 5, 1. Tebn

1

tire], # Loom "
"l
oe

Sxinple SEELTY ofiscl Of MAD NDOTE DOCGNECE GATA eSTIY

T =The Fioor = sBiny Ead
L1 [images. muu. muu.mu shdow, *The w:

1 lllm.unll. AIz*s ilke n Stserz. Of
2

Leanl,
i spoornoand £oldr),
rould Taat me demsectii),

e made Prom strong plastio. T
& soft mushioe*],
oh & seft cushice”],

"Boogsnelves, sTao
I:

Srad wits iefas enint]
2 [images.Dogkoase swall, m:u.nu: shadow,
e

referende books*],
_anadcw,

Aragen images.hatf_shadme,

) cmpucex. 9as Lt £o rin uxe Hagport diegmoasicsT],
121 [hacey, A plaat, groes mAre],
[inages . alacrrioall, .l.nm
[S E—— 2oz preering the wace
Hmagme slacizizals, images.half_ssadow,
oTIical systess meed 0 pOSering the smace statioa],
[lmoex.ancuus. images.oaotus_shadow, "0usk! darsful on
[l-nwex.unxnb. Amages, snrd_shatiow,

A mace lettacs, Li3g, DT EMARLNG
[m pipesl, lrages.pipadl ahads,

inages pipesd, iwages.papesd_shndod,
Figes fo1 1he Life sipport Bysvens®
[lmaa- mr imagua.door_ahadow,

safecy tessans, T rsuires Ted pecaca ope “1s
221 [imsges.dooz, images,door_snadow, "3 Tockod ding. T mesds '+
+ PIANER WAME 2 "3 acoewa caza®),
A lockes dsss, Tt sweds =\

e s

18 nmoea o0z, myeu.noor :nnumn "L lockes ssez, It =ssda < 4
-y 2. saral

[lmwu dogx, Lmaged. mn(anadow,

18t

gouze fance, It Salpe Drotecs the stasisn frem dust o],
ELR [mn cantrapTion, l.mu CORETApEin_ALadod,

e Ic gemTiy yibstesn];
33: u—s-..m'. am izages.zobos_srm shadzw,

™14
dow; "R mparkiing cless toileztl;
i Wich mEmning water®, "coe tapat],

- Tt guAkly ghows feom isead

371 [images avlemoe_Leb_table,
"4 table &2 experiments, analymity the plaser soil asd dusc"),

38: [imszes wendisg machine, images full shadow,

s

sequisem & + *Ehs vanding za=sinat],

Erean. maks sufe scbody goes ous wicoe.M],
+n| [mwes.xuwe ship, Lmages,Teocus Ship aBacow, “A rescue nipi®),
insges.wisa imagEs.midaton zontrol desk ahedou, b

s,
% sus cmec cthe plamet aucfacs o,
461 [imsges,robot, images. rokot_shadow, " dlseming XiCor; Tasned oEEY,
461 [images, robotd, Lwages,robatid_shadow,
=& piamer aurface eRpAGFATION ¥oBAr, EWelrify seC—=p.*l.
PE ot knz_abucicw, "
40: [inagus toric oo, Soes, "Taxss fissr - d= mcs

ki anery Bell - dasgeze
“Min =oergy bell -~ .muhoux
= mueo,mu:u =macow,

spoce. sraulon Fystess.®],

“thw ElipboessT],

sky air canistecTy,

“p asalen ALy ommisTerf,

s,. x.;. Biok ux up By e orses L yow mewsiny Tamsily saath

5 || 5
Feoe=. Tr nm

15 B2 QAT LOON smeriy,ny 'x-«dy it 'aco ir
*The book Maa T=e words “Bon'c che §
*a EzewTl;

t Tanes”, 123 paspeen],
Fovdle. = weall mpace eMplorsiion STAfT
2 Boodis Sanderl,
=ermicabions syroes, froo the)

SET modulet];

[images.acisaccs, e,

scizacra, Ceeful ¥, *starpened st

wraton's wesding sy,
A statlon Gredit®],
T80 [Leages.acoess_sard,
“Teis access Sard belo
sard,

o " + PLATER NRME,. *an access camf],
T3 " 4 FRIENDL NRME, “an scoers swrdej,

SE * 4 FRIENDZLRRME, “am aczams cazdt

1 Boenery describes Spjects tRAT COMNOT 0TS DECWESL LOURS,
§ room munber| [[oblect number, ¥ pealtion, W positicm]..]
sgenery =
113w, 8,210,
1133,3,97, 133,4,11, 138,481, §47,8,21,
473,100, 147.59.8], 142,161,
288 [§27,0,3], 041,4.3], (43,4711,
90 [i7,2,68), 16:2,8]. [22,3,13). [44,0.1).
126,48, 400, (30,111, 1 21, 137,4,911,
10%4.1,11, 138, 11,
Al 1411,1,1], {1%,1.0], 146,L,31),
a2 [14%.2,2], [45,2,9) 145,2.4], 48,3, 2]- T458,9).
48,3,41, (48,4204 31, (484,411

= 1{18,1,1], 21,31, §1%,1.8], 118,31, lﬂ]. 148,2.1],
142,2,71, 145, n4=,3,311,
1037,2,31, 333,871, 137,10,41, 138,3.311,
1126.2,8], {16,2.2], 116,3,3]), [(16,3.0], (368,91, [36.:8,2], [26,1:8),
161,81, ln.a,i]. 112,5,41, 132:8.81,
115,4,6], (12,711, (371110,
114, 2,11, 1%, 1. [2,3,%]. [B,3,

12,8,41, 1€,5,71, [49,3,1]. [33,3, ?J]y
I ME AL, (453,20 145,700, 148,521, (455,81
48,7,2], {48,5,2] (48, 9,9). (48,11,1], B45,11.21),
143020, (6230 (656, 164,00, 15,250, [45,3,000),
1038.1,11, 17,341, 17,6, PR TR PR CP

2,10 411

e

18, 3,915 16, 6,91, [45,3,12], 133,3,80,

S0 [041,5,3], 145,571, 141,831, 141,9,71,
(331,10, 135 L3l (4.2),

A0 143,000 133,610 Medille (380651 47040,

139,730, 132,011, 132,190,

A E T T At L FETR T

128,131, 2,7 134, LBl ,

530010 HEsa, 21, (45, 3,30, 53,40, 5,541 151,001,

109121, (44,20 153,70, [83i80 (8,080, (5830, [7.3.200

1B, 1,11, {83021, [36,1,8]. [ELL71. (54040, [6,4.7), [4,1.2)

i 17T, 4,30, 127,481, TIT,4, 310 DIT.AL L 13T,

ln,u.u, 137,6,31. 137,8,31, 137,841,

137,851, uT.s,s]. 0T8T (4 L110,

1114,3,37, 11,510, 15,630, 153,31, [401

45,4,8], (i1, 1 1]. 113;1,8], 133,2.1], 46,4811

.m| Coacaum = &
Smack_sounter = 0
KEY‘ Xoon_Acenery 11st i soenery.itema)i
cexery Item 15T 13 DoOMm sgessry liscs
il S el g
+ mcanmry_stam Lirsil] * lEey b L
+ senery_tvem 1istia] ¢ [hey + 2i)

Flanes focerizne.

¥ isem = rondom.choigegli6, 29, 25, 301)
amy[xum: = [[scamery_iten, random.rasdincild, id.
=a=don. Twndint |2, 10}}}

360| 4 De= loops to Add fesces fo TS plsmet susface CooEs.
Sl o it oo i SAnOE R AT
! oonmumher 1= [1, 2, 3, 4 i1 f Add Top fence

Pl e e e A
soon pumber 1= [, 8, 31, 18, 313 P
Sokerliyion seshit] 45 Hate =i enanafestes o)
fes Toom mumber f= [5, 19y 15, 30, 3517 # 3ad right fesde

Svoaryioace, sembas! o (131, som cacsatomten 5331

i Soeneryla1][-1] ¥ Delece last fence pan=i i Soom
L ‘scenery[IE1[-1] # Delece iasu fenoe pansl in oo 36

Ty
HAF
seres

ame_f3zor_cypell:
undoor_rotmal

2 wises, zzom beight, rocn nars, Sezesd mup

Toor_width = oom date[Z)

£loox Type = ger_fioox CypE()
: _zocm 1= cangel3, 203%
bottom sdge = I famil
318 _edge = $a01]
T gnreeRt_zoom = fangeill; 2811
Eoteon_sdge 11
aide_sdge =

it guzzeS:_some
i
ide_edpz =

% Czeace top line of room map.

& wrdth, wmtnjo

Tatm_map, append | |side_ed v
+ 1E100z_type] * (£oom_widTh - 2) + |aide_eage})
8 Aod botton line of Toom wAT.
fooe_sap_appendi[Eotton_sdgs] o focm wides|

§ T doorways,
Alde ol © 1anirrom Betihc f 3)

maddle colanm = in% jroom widsh J 1)

it zooe Sealdli § IF smis ms rigme of shis race
zoom_maplraddie_rov] [soom widch - 1] = Floas eipe
xoom mapiriddle rowsl][zoom widsh - 1) = floox_typs
zoom_mapimiddle_row-1] [roca widsh - 1] = flaoz_typs

i puzzamt_ross ¥ MAP WIDTH = 3: § 1f oo i moe == lmfs =f map
so=n_to lef: = GHHE_MA[c=rress_zzom — 3]
£, »dd left exic in

If Toom on Che s

1t zoom vo_lefridli
rocl_vap[riddls_zow] [9) = floor_type
socn_sapmidale_saw 4 11001 = fleer_type
socn_paplzidaie_saw - 11001 = fleer_tyre

S ham & Tighs s

e £ T i b
Toom_psp{ 0] [eicdie_colusn] = £lou:
zoom_mep] 0] [R1aTie colusn + 3] = o _Tupe
oo map?0] [sicdte_cslumn - 1] = floec_ture

Toam_k=low = GAME_FAE[currest

If toom beliw Ras W nop

it zocm bmlaw[al:
roon_rap[soon_beighs-1f aiddle ssiwm] = fisoc_tyee

At poTTom Gof th

-y
cecazy_numbes = thiz_scemezy[0]
sotmery_y = tals acendryil]
sotmeryTn = TaLa_aseneryil]
rocn_sep [acenery_y) [scemery)

= =omiezy_nunber

tmage huce = ctiwcta[scecesy_numbec] 0]

t;mage_width = image_here.ges_widtan|)
image widch i Tiles = ist(i¥age_widch ¢ TILE SIZE)

tile_monber Lo casge|l, iswge_width_in_tiles):
oox_maplsoenesy_yilscenszy_x + £11

£ gursest room <= MAE SIZE - MEP_WIDTHs # Tf zomm [s mot o bottom Tew
H]

gencez_y = int |BEIGAT / 11 B Cenver of game window
gencer’x = inc RIDTH / 3}

zoom pizal widit = coom width ¢ TTLZ SITE § Size of somm in piamls
zooe pizal height = soom beight * TILE 3TZT

Top 1efT M = ptaver W - 0.5 * room piwel widch

Top_lefry = (oemiel y - 0.5 ¢ reofi pinel_bedght) = 110

Ipesp_zocn == curcesc_soo
race_maplp=ap_vi nrop_x]
Toon_map[pecp, v [pxop_x} = prop mubez
1magE nere = chiecca [frop_nmme=T [0]
inags Wldth = inage_Bers.Qer_sidTh()
image_widin iz tilea = intitmage_sidch | TIiE_sizz)
o7 tile munber in Tasgs(l, image widsh im Giles|:
rocw_wapiprop_v] [PTop_ + TALE_mumbsr) - 186

ahow_text("Tou are hex

= = + coon_same; 0}

Apaf ol gare_loop)1

= Flayes_z, playss_y, cussest caom
Erom playes_x, fioo playws ¥
piayes_inage, player_iwage_ssadow
selecced_ttew, Ltem Darryiig, energy
bl playws_sEfamt_x, playss_cEfmt y
5 playws_Fams, playes_dizectiom

1
1

f Player_frmms > O
player_trame += |
Gime. alenp 0.5

Playez_frams -

playes_offaes @ = o

playes offast_y = o

fron player_x = playes x
tron_playex y = playes y
Blaer_x 4= 1
Bleyes_dizectiom = trigeet
e —
Eeypodrd, Lefri felif stop
fron player x = playes x
¥ = playmz_x
1

Playes maKing disgomal mnvemsata

i playms_x = soom width: § shomach deaz = RTGNT
mncheduls [mezard aoee)

currest_toom += 1
Generats_marpi)
Flayer_a = 0 # astes
Plapws_y = ink(roce twight (3| # snses st 4o
player_frame = @

acart_tecme)

pEnerats_map)
Playes_s = zesm vade e zseme
Playws_y = int(room heighe ¢ 3f # sater et doss
Flayes frass = o

anars_tosmt)

s

Lf playmr_y == zoom Basght} § thresgh docs e BOTTIN

sy) Ehcougs dooz mt TOR
#ciotk . nnacacole (bazess_save)
winTE

¢ kmyboard.g:
Fisk_w_ohiest il

f keytoard.tab e len(iz my pockscsl » 0
aniected -1

walected_ttem > ia

selected Iter = O
icen carrying = in_my pooketalselected iten]
dimlay inverrozy()

1n_ny_pockst

kmybcard.d
dzop ckiecn |omJny~ex e nld_p..lwx w

i kemyboard . apace:
Pr———)

IC e pliyr: 45 meniieg: smmcor: Sy MGG S W Oy bRk
e plaes_y] (plages] A g oo At s
2_zap iplays ymz_al f=

player_w = o_ujnyer x

playery - ol plajesy

player frame =

* player dizectios == "cigmit and pleyes_frace > 0%
Piie fufhen & <=1 6t v piee dobla
¢ player_Jizectitm ==
PLIVSE_offast x
wxn-x Hizectioe == Tt
- cffaet y = 1 - [9.38 % playes fzams|
' mnyer Tizectivh == o ez trane > 01
playel offser_y = -1 + I& 25+ PRAYeD_Tramsh

LI
ELAT 12
T

w_imsod (ieags, 5y N1
ean.biint

(Eop_lafe x - % ¢ TILE SIIE
cop lafc y + |y * TILE SIZE) - image.ger Saighe |||
i

Aran_ahacow |Lrage, ¥, =}
F=zamn.Elie |
1mags,
ttop_Left W + |x = TILE SLIZf,
vop_left_y + |¥ * TILE_BIIE}}
)

draw_player |
playes_image = FLAYER{playes diregrion] [player frame|
drak_i¥age|playes_inage, plaper_y + player offaec_y
Flayes_x + playes_offast_x)
dow = PLAYER_SEADON[playes_dizectice] inlayes_fraoe|
draw_ahadow|playes_smage shetow, playes y + player offret iy,
Player_x - player_offsec w

8 Clear the gave nress azes,

Bow = Recr| 19, 180}, 1300, €001

a=zwmn.dcav. Filled_cect (box, RID)

box = Bect (10, 0), |293, tsp 4Pty + |ssom height - 3173001
scxeen, surtade, sec_alip thak)

tlogr_sype = get_fioor_type)

4n seoge (oo besght) ; § Lay down Eiooe eid
x = range [roca_widchlz
drwe_ieage fckaeosa [floor_typel [, ¥, K
3 e S enln sdovs; o falk G nip o, e h S
£ Touk_eepiyl¥] i trems_player may scand cm
Azaw_image Icbinceelzoom zap (3] x11101,° 7, it

4 Bressurs pad in rood 26 19 acded Here, = props cam go on top Of 16,
Lf uremt_rook &
dxa_snagecabieorslas] (0], #, 2
image_c=_pad = roco_sap(2] il

inaze_sn_pad -
are_imane P, - on_ped] (o), 0. I

i Beighci |

cemzor welk TR S g e el 3 e it
tems player mey stend cm + [35511
ixage = ObJeccslum Eeze] [0]

e R

et
xoom wap (] (x] == 1) -

ll:\irm\:)oom = wwr xooma

¥ = Faon basght

st Toom_rap[viix] == =

X < Yoom width - Lir
3 A0d TranspAzent wall image 1n Ths Fromt row.
image = PILLARS|wsll Crazsparency frame]

draw_imace (trage, ¥, ¥

cbiectalicem Sece] (11 # It ok
smaddcnr 1wage = un:leumicu here] 1]

§ 1f afadow mionn nesd BoriZootal ciling
Lt smadow_tmege L [images.helf_snadow,

ireag 2
mhadaw widthw tat|izage.ger_widen{] | TISE =TIE)

Ear @ in range(D, X
rav_snadow |smadow_image, ¥, REz|

Arw_stucsow (ahudcu_tzage, ¥, ®

* iplayes g = ¥11
dxdn_player()

F=zaan.rsrace.aat_sLip(l

£ adjuat_wall cransparsnoyi) s

F15ta) Wall_rzansparency frame

2t (player_y = Tocm_height - 3
wng muwm hedgint - 1] [player] == 1

1 czansparenoy_frame < 411

¥all_Teanaparsscy feabe = L # Eade wmll oar.

f (iplaymr_y < Toom_hwight - 3
Toum_map{room helght - numyn)

#o wall TramapeTescy _frawe =
Wil rranaparsacy frams - 1§ pae w1y

st taxt|text to show, lize suskes):
t X1

taxt_lizex = [15, 501

Eox = Bect| (0, cext Lineaflise nuebaz]], (000, 3%})
Fzzemn.draw. f111ed te) cbux. =Tnci

BozTeen .drav CeKE [TENT_Eo_t

138, Eew .\.\xﬂ[um muwber] |, oolor=GREERF

I Frops are chyeosa that may move becwees IomER, AppTAT Ur Gisappesz.
£ ALl props mast Le ser Up heze. PECPS DOT YU in The QERE g0 INGO Toom O,
& cbjest nunber | |zoom, w |

4, 3

il

22, 0, 3], 363 (87, 1, 61, F M0

e, %, €1, 53: {45, 1, 5, Sa: 19,
@, 81, =T (3, 4, 61, = o0S,

o, o, 0], Mm: [, 3, %), 625 (36, L

[27, %, 3], 6k [60, 1, T|, 861 {35, s;. W06 L1

10, & 0l fa1 130, 8 81, 901 147, 1

[0, TASTER_Y, LRNDER_XY, 72: L3,

2%, 1, 17, 19,70, 01, 7e: lu, 3.

132, B, 1i], Te: [28, 3, 2], 8G: [4I, 7,

L 0, 11, 22: WL, 6,

3: 138, 0, 21,

T L1 :xx-p—q becaues 1t's diffecent sach gese
hecksun += jprop(o] - key
2] gy = 1)

= BEERLIE 0 (kmy < 31D
flen(propa), "sropa”)
© lenipregel == 3T, "ERpsziad 37 prop items”
Print ("Ezop checkmuni®, ghecksanp
= $2414, "Erzor in pEops datat

12 ay_pockets = [55]
meleoted item = 0§ The firaT iiee
iren_carrying = in_my_pockecssélected ivem]

rind ckject_scac: x():

checker_x = player u

* £oon_wap[piayes yl(oteaker x) = 3551
%=1

r———

ger_iten_ndes piaver() |
A%em w = find Skieor_start_ai)
Shm pilaesin = Zrom el 3 1)
sin trem_playes_i

piok_up okieani)s
locazsan,

cax_playes :
: n:u_nuyu R Ln ATems PLYEr may CATTyr
leax The flooX space.
xm-_unlnum_yj [Paaysr &) = gst_floor tyget
aci CEzmet (iten pleyes_ie s
mhow_tmxt (TEow cerryisg " 4 cblactafiten playes zwe oal (3. 2
acunia ploiep. pLay ()
cime.aleep (o6

net
show Tews (Yo

Gl srlected_item, item catrying

s pesacs, igpesd | 1oy
iton Sarrying =
e e A R e
aslucted_stam = les|in my_pecketal - 1
display_zwencory|)
pEopafiten) (0] = ¢ # Carzies cbd

TA e INTO 2om © (62 TRe mApi,

diapley_smvenccoy
box = Bect|(f, 44, |mB0, 3981}
screen,desw, f1lled_reot cbow, SLACH)

Lf len|i= oy pockers) ==

=Tars_display = |seltosed item /7 16} = 16
T4 55 s = i i pukEealacar dioplay. | ovame dimia v 16}
wulaZtad meckes = salected item & 1

oo iten countaz Lo range(les|Iise_to show)):
iten _manber = List_to_snow{inen_cosater]

imag= = abjectsiiten nunker] (0]

acTeen Uit (2mage, (33 - [4E dten_csuntesi, B01)

box_left = (selected mazker * 44) - 3

bW = Beor| (33 + b legs, 851, (40, 491)
SOreen .aray, rect (box, WHITE

b A i SR D

screen.drav.cent [descripoice, (20, 130}, color=twiizen)

£ drop_obisct (ol y, ol Kii

£ zoom maplcld y) (514 s] L= 19,3, 38): # plecas yo cam dosp shicgs
props{iten parrying] (0] = curent room
propsistes_carrying] [1} = o1d_y
propaistas carrying] (2} = cldx
=oen map[ald_yjield x] = ftem_caz
ahow_taxt ("Tow tave droreed 7 + chisctalitem cazzyingildl, Of
soumds,drop.play i)
Temove_obiect |ATem CAXTYITG)
]
#3sei § TRiw only Sappena £F tie:
ahow tens("Iow can's dIce than o
imesxbaep (0,51

* remove objeor|icesdd ¥ Takis icem oot of Lsvestory
Ban) global seledred icem, in wy pookecs, icem carrying
t2_my [OCKITE. TREOVS |A1E)
relacied_tten = salected_item - 3
+f awlcEed_stem & O:

selected iter = 0

nex Sarfying = fa Set iTen’ caliyiag To Ealse
sims;: § Dtbarwiss mat 2t to che ew ET

tam_casrying = iz my_pockwes{rslscced_stem]
camplay_izvestosyi)

45} ger smawine_cbjesn o)
Arew player_is_on = ger_ites under playext)
ZmEr_tile_of_siem = Find E3act_wiast_xil

it iter piees_ta cm i 10, 317 4 Seni de

€07 ‘Prop_minbet, decalls Li prope.ivemai) |
props = gbiect manber| [room Eumber.

if dmessimlt] == cerzamc
-z pecr

at plwjerts Iscatian bt

== Flayss_y
ol degailsgz] == efr pile of itam

1"
sBow_bexk desczipnics, 9
Tame alenp 050

|
| gemerate wop ||

ozk.mchaduls_tztazval gams_lszp, 0.0%)
chedule_izcazval |-41=.=_...u_u—u-=.|=.n=r, s.0m
hadiL |

maf

it lentin ny peckess| == 0) & If TR&y'ré nor carrying amyrhing

& the Elzae

= "oy sess * o+ ob . piayer_ts onbidh

ooz § £ pep se dn the soom

11 Toom_mapldecelle{i]) [dezallsil}] |= prop masber)
Dby

4 foma " & chiecealpsen sebes] (3]

