Part 5
Space Mission Directions

Navigate out to the Google Classroom for this class.
Locate the Space Mission Part 5 assignment.

We are now ready to start adding code to our file. Using your Windows button menu, find and
launch your IDLE program.

All AppS Documents

Best match

IDLE (Python 2.8 B4-hit)
App

search the web

B idie - see web results >

IDLE is the integrated development environment associated with Python. It is made up of a code
editor where you type your code along with other helpful tools that allow you to write, save,
and test run programs.

IDLE is designed to recognize Python code, compile Python code, and provide basic debugging
tips to programmers if there are problems with their code.



4. Your IDLE window should look something like this once it has launched.:

| & Python 3.2.6 Shell - O X
File Edit Shell Debug Options Window Help
Python 3.8.6 (tags/v3.8.6:db45529, Sep 23 2020, 15:52:53) [M5C v.1927 64 bit (&M

DE4)] on win32
Type "help"™, "copyright™, "credits"™ or "license ()" for more information.

2>

Ln:3 Cok4

On Startup, IDLE will display the Python Shell, which can be used to give commands to the
computer’s operating system. Since we are viewing the shell through IDLE and not the actual
command prompt window, the commands that we type into the Shell will not communicate
directly with our operating system. However, you can type similar commands in the Python Shell
directly from the Python program (not through IDLE) and, if you have permission to access the
operating system’s commands, you can communicate with the computer’s operating system

that way.

In IDLE, the shell is mainly used as a launching screen for other activities that we will do, like
writing code for our game or debugging a file.



8.

Go to File > Open and then browse in the Starting Files folder | gave you to find the escape

python file that we have been working on.

[# escape 1172272021 8:34 AM Python File

O KB

Your escape.py file will open up.

Click at the end of Line 54.

&notn

]

o

[Xa]

"down": [images.spacesulit_front, images.spacesuit_front 1,
images.spacesuit _front 2, images.spacesuit front 3,
images.spacesuit_front 4

}
Player direction = "down"
Player frame = 0

ilplayer _image = PLAYER[player direction] [plaver frame]

Player offset x, plaver offset vy = 0,

FEFFFFFFERRRRRR
F MAP F
FEFFFFFFERRRRRR

Press ENTER twice.



9. Type the code you see on Lines 56 — 73 of the screenshot below. Ensure your indentation and

capitalization match what is shown in the screenshot.

player direction = "down"

player frame = 0O

player_image = PLAYER[player direction] [playesr_ frame]
player offset_x, player offset v = 0, 0

PLAYER SHADCOW = {

"left": [images.spacesuit left shadow, images.spacesuit left 1 shadow,
images.spacesuit left 2 shadow, images.spacesult left 3 shadow,
images.spacesuit_left 3 shadow
]i’

"right": [images.spacesuit right shadow, images.spacesuit_right 1 shadow,
images.spacesuit_right 2 shadow,
images.spacesuit_right 3 shadow, images.spacesuit _right 3 shadow
1,

"up"™: [images.spacesuit back shadow, images.spacesuit back 1 shadow,
images.spacesult back 2 shadow, images.spacesult back 3 shadow,
images.spacesuit_back 3 shadow
]i’

"down": [images.spacesult front shadow, images.spacesult front 1 shadow,

images.spacesuit_ front 2 shadow, images.spacesuit front 3 shadow,
images.spacesuit_front 3 shadow

1

G| #REEEERIIERRRES

Line 56 will create another dictionary in your game called PLAYER_SHADOW. This is similar to
the player dictionary. It contains animation frames for the astronaut’s shadow on the floor. As
the astronaut moves, the shadow also changes shape.

n u

Lines 57 — 73 contains dictionary keys (“left”, “right”, “up”, and “down”) and the images for each
shadow position that the animation will iterate through.

10. Press ENTER twice.



11. Type the code you see on Line 75 of the screenshot below.

56| PLAYER SHADOW = {

"lefc": [images.spacesuit left shadow, images.spacesuit left 1 shadow,
images.spacesuit lefr 2 shadow, images.spacesuit left 3 shadow,
images.spacesuit_left 3 shadow
1,

"right": [images.spacesult right shadow, images.spacesult right 1 shadow,
images.spacesuit_right 2 shadow,
images.spacesuit_right 3 shadow, images.spacesuit _right 3 shadow
1.

"up™: [images.spacesuit back shadow, images.spacesuit back 1 shadow,
images.spacesuit_back 2 shadow, images.spacesuit back 3 shadow,
images.spacesuit _back 3 shadow
1,

"down": [images.spacesult front shadow, images.spacesult front 1 shadow,

images.spacesuit_front 2 shadow, images.spacesuit front 3 shadow,
images.spacesuit front 3 shadow

I

75| player_image shadow = PLAYER_SHADDW["ﬂ:w:"][Oﬂ

FRERRRRRRRIRRRES
70| ##

MAP %

Line 75 creates a new variable called player_image_shadow. Its default value is equal to the first
item for the “down” entry in the PLAYER_SHADOW dictionary (the item with the index value of
0). This variable will store the astronaut’s current shadow, like the player_image variable that
we created earlier store’s the astronaut’s current image.

12. Press ENTER twice.



13. Type the code you see on Lines 77 — 80 of the screenshot below. Ensure your punctuation,
indentation, and capitalization match what is shown in the screenshot.
56| PLAYER SHADOW = {

57 "left": [images.spacesuit_left shadow, images.spacesuit left 1 shadow,

58 images.spacesuit_left 2 shadow, images.spacesuit left 3 shadow,
o images.spacesuit_left 3 shadow

&0 1,

61 "right": [images.spacesuit right shadow, images.spacesuit _right 1 shadow,

62 images.spacesuit _right 2 shadow,

images.spacesuit_right 3 shadow, images.spacesuit right 3 shadow

64 1,

65 "up™: [images.spacesuit back shadow, images.spacesuit back 1 shadow,

images.spacesuit _back 2 shadow, images.spacesuit back 3 shadow,

images.spacesult back 3 shadow

68 1.

69 "down": [images.spacesuit_front shadow, images.spacesult front 1 shadow,
images.spacesuit_front 2 shadow, images.spacesuit front 3 shadow,

1 images.spacesuit front 3 shadow

72 ]

75| player_image shadow = PLAYER SHADOW(["down"] [0]

77| PILLARS = [

images.pillar, images.pillar 395, images.pillar 50,
imagesz.pillar &0, imagesz.pillar S0

]|

Wwocn

## MLFP i

Later in the chapter, we will add animation that fades out the front wall when you walk behind
it so you can still see the astronaut. Line 77 creates the PILLARS list that lists different image
frames the animation can move through (Lines 78 — 79) when we do this.

14. Press ENTER twice.



15. Type the code you see on Line 82 of the screenshot below.
S1l|player direction = "down"

52| player frame = 0

53| player_image = PLAYER[player direction] [plaver frame]

54| player offset_x, player offset vy = 0, 0O

S&| PLAYER SHADOW = {

5 "left": [images.spacesuit left shadow, images.spacesuit left 1 shadow,

SE images.spacesult left I shadow, images.spacesult left 3 shadow,

images.spacesuit_left 3 shadow

&0 1,

61 "right": [images.spacesult right shadow, images.spacesult right 1 shadow,

62 images.spacesuit_right 2 shadow,

images.spacesuit right 3 shadow, images.spacesuit right 3 shadow

64 1,

65 "up™: [images.spacesuit back shadow, images.spacesuit _back 1 shadow,

1 images.spacesuit back 2 shadow, images.spacesuit back 3 shadow,

3 images.spacesuit_back 3 shadow

63 1.

"down": [images.spacesuit front shadow, images.spacesuit front 1 shadow,
images.spacesuit_front 2 shadow, images.spacesuit fromnt 3 shadow,

1 images.spacesuit_ front 3 shadow

72 ]

r
%]

(T ]

75| player image shadow = PLAYER SHADOW["down"] [0]

77| PILLARS = [
images.pillar, images.pillar 95, images.pillar 20,
images.pillar 60, images.pillar 30

1

(T I]

ZZ2|wall transparency frame = q

25| BhEEEEREREEEES
36| #% MLF *#
S7| $EEREEEEEEESE

Line 82 creates a new variable called wall_transparency_frame. This variable will remember the
PILLARS image frame that is currently being displayed. It is set to the index value of 0, which will
be the first item in the PILLARS list (in this case, the images.pillar).

16. Press ENTER twice.



17. Type the code you see on Lines 84 — 89 of the screenshot below.

77| PILLARE = [

T8 images.pillar, images.pillar 95, images.pillar 80,

75 images.pillar €0, images.pillar 50
|

22| wall transparency frame = 0

24| BLACK = (0, 0, 0)

*5|BLUE = (0, 155, 255)

26| YELLOW = (255, 255, 0)

27| WHITE = (255, 255, 255)

22| GREEN = (0, 255, Q)

5| RED = (128, 0, 0}

SZ| FEFEREFIEAREEER

93| #4 MAF #7

S4| FEFFFEFIFAIEERF

Lines 84 — 89 will set up different variables named BLACK, BLUE, YELLOW, WHITE, GREEN, and
RED. The numbers after the variables indicate the RGB color values for each variable. This sets
the specific shade of each color you would like to use in your game.

Colors in Pygame are stored as tuples. A tuple is like a list whose content you can’t change, and
it uses parentheses instead of square brackets. You’ve seen tuples used for coordinates when
drawing on the screen. Colors are stored as three numbers that specify the amount of red,
green, and blue in the color, in that order. The scale for each color ranges from 0 to 255.

18. Ensure that your “MAP” comment runs on Lines 92 — 94 of your code. You may have to add or
delete blank lines to make this happen.

19. Scroll and click at the end of Line 455.

if current room in Scenery:
for this scenery in scenery[current room]:
scenery number = this scenery[0]
scenery ¥ = this scenery[l]
scenery x = this scenery[2]
room map[scenery y] [scenery x] = scenery number

image here = objects[scenery number] [O]
image width = image here.get width()
image width in tiles = int(image width i TILE SIZE)

for tile number in range(l, image width in tiles):
room map[scenery y] [scenery x + tile number] = 254
FEFFFFFFFFFFFFF
##% GAME LOOP ##

450 | FEFFAAARAATIAAS



20.

21.

Press ENTER twice.

Type the code you see on Lines 457 — 462 of the screenshot below. Ensure your indentation
matches what is shown in the screenshot.

443 if current room in SCEenery:

444 for this scenery in scenery[current room] :

445 scenery number = this scenery[0]

445 scenery ¥ = this scenery[1l]

44 scenery X = this scenery[2]

448 room map[scenery y] [Scenery x] = scenery number

450 image here = objects[scenery number] [0]

451 image width = image here.get_width()

452 image width in tiles = int (image width i TILE SIZE)
454 for tile number in range(l, image width in tiles):

455 room map[scenery y] [scenery x + tile numbker] = 235
457 center ¥ = int (HEIGHT / 2) # Center of game window

455 center x = int (WIDTH /[ 2)

455 room pixel width = room widch * TILE STZE # Size of room in pixels
4 &0 room pixel height = room height * TILE SIZE

461 top_left x = center ®x - 0.5 ¥ room pixel width
462 top left vy (center ¥ - 0.5 * room pixel height) + llq

QES| FFFFFRFARAFARFRT
466| #% GAME LOOP ##

47| FEEEREREEEERERE
We now need to position the room on the screen.

The code you just typed starts by working out where the middle of the window in a room is. The
HEIGHT and WIDTH variables store the window’s size in pixels. Dividing them by 2 gives us the
coordinates of the center of the window. We store these coordinates in the center_y and
center_x variables (Lines 457 — 458).

This program also works out how wide or tall the image of the room is in pixels (Lines 459 —
460). This will be the width or height of the room in tiles multiplied by the size of a tile. The
result is stored in the room_pixel_width and room_pixel_height variables.

To put the room image in the middle of the room, we want half the room to be to the left of the
center line and half to the right. So, we subtract half the room width in pixels from the center
line and start drawing the room there (Line 461). A similar calculation is made for the top_left y
variable, except we add 110 to the result because our final screen layout will use an area at the
top of the screen as an information panel (Line 462).



22. Click at the end of Line 467.
center ¥ = int (HEIGHT / 2) # Center of game window

center x = int (WIDTH / Z)
35 room pixel width = room width * TILE S5TZE # 5ize of room in pixels
460 room pixel height = room height * TILE S5TZE
46l top left ® = center_ x — 0.5 * room pixel width
462 top left y = (center ¥y - 0.5 * room pixel height) + 110

ES| FRFFFFFRFFFFFFF
466| #%# GAME LOCP ##
67| #i#EEEEsssssssy

23. Press ENTER twice.



24. Type the code you see on Lines 469 — 470 of the screenshot below. Ensure your indentation
matches what is shown in the screenshot.

465
466
467
468
469
470
471
472
473
474
475
476
477

478

FERFRRRRRFEREEF
#% GAME LOOP ##
FERFRRRRRFEREEF

def start_room() :
show_text ("You are here: " + room name, Gﬂ

def game loop():
global player x, player ¥, CUIrent room
global from player =, from player y
global player image, player image shadow
global selected item, item carrying, energy
global player offset =, player offset y
global player frame, player direction

Line 469 creates a new function called start_room in the GAME LOOP section of your code.

Line 470 will run the show_text method to display the text, “You are here: “ along with the
room_name, taken from the GAME_MAP list. The 0 at the end of the line of code indicates the
line number. We haven’t created the show_text method in our code yet, so this will make more
sense later.

25. Scroll and select Lines 583 — 633 (the entire “EXPLORER” section of your code).




26.

27.

28.

Press BACKSPACE to delete this entire section. We won’t need it anymore.

572 if player direction == "right" and player frame > 0O:
573 player offset x = -1 + (0.25 * player frame)

574 if player direction == "left" and player frame > O:
575 player offset x = 1 - (0.25 * player frame)

576 if player direction == "up" and player frame > O:
577 player offset v = 1 - (0.25 * player frame)

578 if player direction == "down" and player frame > O:

player offset v -1 + (0.25 * player frame)

r
=]

SE4| FRFFFERIIIIEIES
25| #%  START  ##
SEE| FRFFFETIEIIIIES

S2E| generate map ()
52%9| clock.schedule interval (game loop, 0.03)

Type the code you see on Lines 583 — 592 of the screenshot below. Ensure your indentation
matches what is shown in the screenshot below.

SEZ| FRFFFTFAARAAIRS

24| #¥ DISPLAY ##

SES| FRFFETFAIRAIIRS

o8 def draw _image (image, ¥y, X}
CBE screen.blit|

generate_map ()
clock.schedule interval (game loop, 0.03)

Sg89 image,

Saq (top_left x + (x * TILE SIZE),

59l rup_left_y + (¥ * TILE SIZE} - image.get_height())
582 )

SOZ| FRFAATFAAAAAAAS

Sod| 4 START 7

SO5| FRFFATAAAAAAAAS

Lines 583 — 585 create a new section of code, called DISPLAU.

Line 587 creates a new method called draw_image. This method will require the image we want
to draw and the and the y and x tile positions of the object in the room whenever it is called.
The function will work out where on the screen to draw the image (the pixel position) based on
the tile position in the room.

Line 588 - 592 will utilize the screen.blit command to blit the image at the location specified.

Press ENTER twice.



29.

30.

Type the code you see on Lines 594 — 599 of the screenshot below. Ensure your indentation
matches what is shown in the screenshot.

SE3| FEFRAFATAAAAAAT
Sg4| #4 DISPLAY ##
SED| FEFFRRFFRAAARFF

CH Jef draw_ image (image, ¥, X!

88 screen.blit |

L8s image,

590 (top left = + (x * TILE STZE),

Lol top left v + (y * TILE SIZE) - image.get _height ()]
5oz )

594| def draw shadow (image, v, X):

5ok screen.blit |

Eog image,

59 (top left = + (x * TILE STZE),
598 top left ¥ + (y * TILE S5TZE))

599 ]

601 ## STAET 7

E0Z| #FFFEFEFERETIES

Line 594 creates a new function called draw_shadow. This function will also require the image
you want to use and the x and y tile positions when it is called.

Lines 595 — 599 will utilize the screen.blit command to blit the image at the location specified.
The draw_shadow() function is very similar to the function for drawing an image, except that
the image’s height is not subtracted when calculating its onscreen position. This is what places

the shadow below the main image.

Press ENTER twice.



31. Type the code you see on Lines 601 — 607 of the screenshot below. Ensure your indentation

32.

matches what is shown in the screenshot.

34| #% DISPLAY ##
S REFRREARRAAIRAAS

draw_image (image, ¥, X):
screen.blit

5 image,
5aQ (top_left = + (x * TILE 5IZE},
581 top_left ¥ + (y * TILE STZE) - image.get_height())

5532 }

54 draw_shadow (image, ¥, X):
screen.blit
image,

(top_left x + (x ®* TILE SIZE),

B top_left ¥ + (¥ * TILE SIZE))

599 )

501 draw_player():

602 player image = PLAYER([player direction] [player frame]

503 draw_image (plaver image, plaver vy + player offset vy,

604 player x + player offset x)

player image shadow = PLAYER SHADOW([player direction] [player frame]

draw_shadow (player_ image shadow, player vy + player offset v,
player x + player offset x)

Line 601 creates another new function called draw_player. This function will draw the astronaut.
First, it puts the correct animation frame into the player_image variable (Line 602).

Lines 603 - 604 then uses the draw_image function that we created on Line 587 to draw the
astronaut’s image. The draw_image function requires the following arguments:
e The variable player_image, which contains the image to draw.
e The result after adding the global variables for player_y and player_offset_y. This is
the y position in tiles, which might include a decimal part.
e The result after adding player_x and player_offset_x for the x position in tiles.

Lines 605 — 607 use a similar code to draw the player’s shadow: the correct animation frame
from the PLAYER_SHADOW dictionary is put into the player_image_shadow variable. Then, the
draw_shadow function is used to draw it. The draw_shadow function uses the same tile
positions as the draw_image function.

Press ENTER twice.



33. Type the code you see on Lines 609 — 625 of the screenshot below. Ensure your indentation,

punctuation, and line spacing matches what is shown in the screenshot.

01| def draw player():

602 pPlayer image = PLAYER[player direction] [player frame]

5103 draw_image (player image, player y + player offset v,

504 playver x + player offset x)

605 Player image shadow = PLAYER SHADOW[player direction] [player frame]

16 draw_shadow (player image shadow, player ¥y + player offset v,
player x + playver offset x)

def draw():
610 if game over:

613 # Clear the game arena area.

614 box = Rect (0, 150}, (800, €00))

615 screen.draw.filled rect (box, RED)

6le box = Rect ((0, 0), (800, top_left v + (room height - 1)*30))
6l screen.surface.set_clip (box)

618 floor type = get_floor type()

2 for y in range (room height): # Lay down floor tiles, then item=s on floor.
21 for x in range (room width):

622 draw_image (ockjects[flooxr_twype] [0], ¥, X)

623 # Mext line enables shadows to fall on top of cbjects on floorx
624 if room map[v][x] in item= player may stand on:

625 draw_image (ckbjects[room map([v¥] [x]] [0], ¥, xﬂ

ZE| FEFRRTAAAANAAAF

E27|#%  STRRT  ##

B2E | FEFERassrAAAAAR

Line 609 creates a new function called draw.

Line 610 will check to see if the game_over variable is equal to True. If so, then Line 611 contains
a return statement that will exit out of this particular block of code and skip down to the next
function. This block of code doesn’t need to run if the game is over.

Line 613 contains a comment.

Line 614 begins the process of clearing the game arena, where the space station will be drawn.
It does this by drawing a big red rectangle, wiping out the previous screen display. The areas as
the top and the bottom that give the player information are separate, so they are not changed.

There are two steps for putting a rectangle on the screen. First, you create the shape using a
Pygame object called Rect. On Line 614, we create a rect object called box. The object is placed
at the x and y coordinate location of 0 and 150 and is 800 pixels wide by 600 pixels tall.

Line 615 will draw the filled rect object named box on the screen, and will fill the rectangle with
the color numbers saved in the RED variable. These numbers are the RGB color values we
specified earlier.



Line 616 creates another rect object called box. This object is created after the previous rect
object is drawn so that we overwrite the coordinates of the first rect object with the coordinates
of the second. The second rect box object will have an x and y location of 0, 0. It will be 800
pixels wide and whatever height is appropriate for the current room the player is in.

You can also use the Rect shape to create a clipping area. This is like an invisible window
through which you view the screen. If the program draws something outside the window, it
can’t be seen. Line 617 sets up a clipping area that’s the height of the room to stop the player’s
shadow from spilling out of the bottom of the game when they’re in the front doorway.

Line 618 creates a variable called floor_type. This line will run the get_floor_type() method and
store the result in the floor_type variable on Line 618.

The room is drawn in two stages. First, the program draws the floor tiles and anything that the
player can walk on. Drawing them first enables scenery, the player, and shadows to be drawn on
top of them. This solves the problem of black holes appearing under scenery, because there will
be floor tiles in those spaces before the scenery is drawn.

Lines 620 — 621 create “for” loops that will loop for each y coordinates and x coordinate in the
room.

Line 622 executes the draw_image function that will access the objects list based on the
floor_type of the room that you calculated on Line 618. This will draw the appropriate floor type
image on the screen at the appropriate y and x location (whatever location is currently being
iterated through in the loop).

Line 623 contains a comment.

Line 624 contains an if function that will check to see if that particular y and x coordinate in the
room_map contains items that the player is allowed to stand on.

If this is true, then Line 625 executes the draw_image function again to access the objects list for
that particular y and x coordinate and returns the first item in the list, which is the image of that

particular object. It will generate the item at the appropriate y and x position.

34. Press ENTER twice.



35. Type the code you see on Lines 627 — 650 of the screenshot below. Ensure your indentation,
punctuation, and line spacing match what is shown in the screenshot.

620 for ¥ in range (room height) : # Lay down floor tile=s, then itemz on floor.
621 for x in range (room width):

622 draw_image (objects[floor_type] [0], ¥, X)

523 # WNext line enables shadows to fall on top of objects on floor
624 if room map[vy] [®] in items player may stand on:

625 draw_image (objects[room map[v] [x]]1[0], ¥, X)

62 # Pressure pad in room 26 is added here, so props can go on top of it.
6285 if current room == 2Z6:

629 draw_image (objects[39] [0], &,
( image on pad = room map[g][2]
31 if image_on_pad > 0:

32 draw_image (objects[imags_on_pad] [0], B8, Z)

2}

in range (room height) :

or X in range (room width) @
item here = room map([v] [x]
# Player cannot walk on 255: it marks spaces used by wide objects.
if ictem here not in items_playver may stand on + [235]:

39 image = objects[item here] [0]

H
F
[

641 if (current_room in outdoor rooms
642 and y == room height - 1
643 and room map[y][x] == 1) oz A
644 (current room not in outdoor rooms
645 and ¥y == room height - 1
and room map([y][x] ==
64 and x > 0
648 anc x < room width - 1}):
] # Add transparent wall image in the front row.
image = PILLARS[wall_transparency_frameﬂ

-E?L FEEEFESEE AR
653| #% START $##
Line 627 contains a comment.

Line 628 contains an if function that checks to see if the value of the current_room variable is
equal to room 26.

If it is, Lines 629 — 632 will execute.
Line 629 will execute the draw_image function to draw the floor pad image (item #39 in the
objects list, the first item in the list is the image associated with the floor_pad). 8 is the y tile

location for the image and 2 is the x tile location.

Line 630 creates a variable called image_on_map and sets it equal to be the y and x tile
coordinate of 8 and 2 on the room_map.

Line 631 checks to see if the image_on_pad variable is greater than 0. If it is, it will draw the
floor pad image at the proper tile location (Line 632).



Line 634 begins the second stage of drawing the room. The program will add scenery in the
room, including shadows, using new loops that begin on Line 634. Because these loops come
after the floor for the whole room has been drawn, the shadows will be drawn on top of the
floor tiles and items on the floor. The shadows are transparent, so you can still see the object
underneath the shadow.

Beginning on Line 641, the program begins drawing the transparent front wall.

When the program is drawing the front row of the room (when the y loop equals room_height —
1), it checks whether it needs to draw a semitransparent wall instead of the solid wall object
taken from the room map. The semitransparent wall is used if the player is standing behind it.

On the planet surface, the program makes the whole wall transparent. Inside the space station,
a transparent wall panel is used only if its not in one of the bottom former positions. The
corners always use a solid wall panel. The reason is that it loops odd if you see the solid edge
wall start in the second frow from the bottom.

Later one, we will add the code to animate the transparency on the wall by changing the
number in wall_transparency_frame. You won’t see the semi-transparent wall yet in the game.

36. Press ENTER twice.



37. Type the code you see on Lines 652 — 669 of the screenshot below. Ensure your indentation,
punctuation, and line spacing match what is shown in the screenshot.

641 if (current_room in outdoor rooms

642 and ¥y == room height - l

643 and room map[v] [x] == 1) or \

644 (current room not in outdoor rooms

645 and y == room height - 1

646 and room map[v][=x] = 1

647 and x > 0

648 and ® < room width - 1):

649 # Add transparent wall image in the front row.

650 image = PILLARS[wall transparency frame]
652 draw_image (images, v, =)

654 if objects[item here] [1] iz not Hone: $# If object has a shadow
655 shadow_image = objects[item ﬁere][l]
BSE # if shadow might need horizontal tilin ng
65 if shadow _image in [images.half shadow,
images.full shadow]:
shadow _width = int (image.get_width/() ! TILE STZE)
# Use ="ad3ﬁ across width of ockject.
661l for z in range (0, shadow_width):
662 draw_shadow (shadow_image, ¥V, X+Z)

264 draw_shadow (shadow_image, v, X)

if (player_y == ¥y):
draw player ()

screen.sarface.set_clip(T::fﬂ

FAAAFAAATTAAATRS
€71| #%#  START  ##

S s Y i
Line 652 draws the player on top of the floor.
Line 654 will check to see if the current object being drawn has a shadow.

If it does, Line 655 creates a variable called shadow_image and sets its value to be equal to the
second item in the objects list for the particular item being drawn.

Line 656 contains a comment.

Lines 657 — 658 check to see if the object has a half_shadow or full_shadow, which would fill
half a tile or a whole tile, respectively. These two standard shadows are used with block items
(like electrical units and walls) that don’t need a distinctive shadow outline. The program checks
whether the shadow_image is in a list that contains those two standard images.

If the shadow is one of the standard images, the program then works out how wide the shadow
should be in tiles. That is calculated by taking the width of the object casting the shadow and
dividing it by the width of a tile (30 pixels).



38.

39.

The program then creates a loop to draw the standard shadow images, using the variable z. It
starts at 0 and runs until the width of the shadow minus 1. That’s because a range leaves out the
last item. The z values are added to the x position from the main loop and are used to draw the
shadow tiles.

If the shadow image is not one of the standard shadow images, the program will execute the
draw_shadow function using the shadow_image from the objects dictionary and the current u
and x tile location.

Line 666 will check to see if the player_y coordinate is equal to the y location that is currently
being iterated through in the “for” loop that starts on Line 634. If this is true, the draw_player()
function will execute (Line 667) to draw the player image. By drawing the player image after all
the floor tiles and scenery, the player image will be placed on top.

Line 669 turns off the clipping area that was set earlier.
Press ENTER twice.

Type the code you see on Lines 671 — 677 of the screenshot below. Ensure your indentation and
line spacing matches what is shown in the screenshot below.

664 draw shadow (shadow image, ¥y, X)

(pPlayer v == y):
draw_player()

screen.surface.set_clip( )

1 adjust_wall transparency():
672 wall transparency frame

674 (player y == room height - 2
TE room map[room height - 1] [player _x] == 1
T wall transparency frame < 4):
T7 wall transparency frame += 1 # Fade wall out.
FRIFTAAATEAAAAS
7ol #% STRRT  ##
FRFREAEATEAAAAS

Line 671 creates another function called adjust_wall_transparency.

Line 672 converts the wall_transparency_frame to a global variable so that this function is able
to access and modify the value of the wall_transparency_frame variable.

If the player is standing behind the wall, the flowing statements are true:
e Their u position will be equal to room_height-2.
e There is a piece of wall in the bottom row of the room that is in line with the
player’s x position.



If the player is behind the wall (Lines 674 — 675) and the wall transparency is not set to
maximum (Line 676), the wall transparency is increased by 1, making the wall more transparent
(Line 677)

40. Press ENTER twice.

41. Type the code you see on Lines 679 — 682 of the screenshot below. Ensure your indentation
matches what is shown in the screenshot.
gcreen.surface. et cllpi =)

1| def adjust wall transparency():
2 7lobal wall transparency frame

T4 if (player y == room height - 2
75 and room map[room height - 1] [player x] == 1
7 1l wall transparency frame < 4):
17 wall transparency frame += 1 # Fade wall out.
7 if {(player vy < room height - 2
or room map[room height - 1] [player x] != 1)

681 and wall transparency frame > 0):
o082 wall transparency frame -= 1 # Fade wall i:J

3 FEREEEEAREEEEES
24| ## STRET #F
05| REFRFFRFAIEAERR

If either of the following is true, it means the player isn’t hidden by the wall:
e Theiry position is less than room_height — 2. The player can be seen, at least in part,
if they’re farther back in the room.
e Thereis not a piece of wall in the bottom row of the room in line with their x
position.

In these cases, if the wall transparency is set to more than the minimum, it’s reduced by one.

42. Press ENTER twice.



43. Type the code you see on Lines 684 — 691 of the screenshot below. Ensure your indentation,
punctuation, and line spacing match what is shown in the screenshot.

Tl adjust_wall transparsncyl():
2 wall transparency frame

T4 (player y == room height - 2
75 room map[room height - 1] [player x] = 1
7 wall transparency frame < 4):
T7 wall transparency frame += 1 # Fade wall out.
578 ((Flayer v < room height - 2
room map[room height - 1] [player x] != 1)
681 wall transparency frame > 0):
682 wall transparency frame -= 1 # Fade wall in.

o84 show_text(text to show, line number):
85 gams over:

text lines = [15, 30]

box = Rect( (0, text lines[lins numker]), (200, 35))
screen.draw.filled rect(box, BLACK)
screen.draw.teXt (CexXt_to show,

69l (20, text lines[line numbker]), CDlDr=GREENﬂ

SOZ | #EREFRFAREASARS
7 START 7

0| FETFATATATAATAN

Line 684 creates another method called show_text.

Line 685 checks to see if the game_over variable is set to True. If so, Line 686 contains a return
statement to exit out of this block of code and skip down to the next function. This code doesn’t
need to execute if the game is over.

The line number will be either 0 for the top row or 1 for the second row, which is reserved for
important messages. When the function is called, the message is put into the variable
text_to_show and the row number goes into the line_number position.

We use a list called text_lines to remember the vertical positions (in pixels) of the two lines of
text (Line 687).

Line 688 will define a box at the x-coordinate of 0 and the y-coordinate equal to the
line_number specified when the function is called. The width of the rectangle will be 800 and
the height is 35 pixels.

Line 689 fills the rectangle object with black to clear the row of text before the new message is
drawn.

Finally, we use the screen.draw.text() function in Pygame to put the text on the screen. This
function takes the text, the text’s x and y position, and the text color. The position numbers go
inside parentheses.



44.

45.

46.

47.

48.

The x position is 20 pixels from the left and the vertical position is taken from the text_lines list,

using the number in line_number as the list index.

Press ENTER three times. Ensure your “START” comment runs on Lines 695 — 697.

24| def show text(text to show, line number):
if game over:

o
(4]

o

o
[RA R es]
o

text lines = [15, 50]

box = Rect((0, text lines[line numbker]), (800, 35))
screen.draw.filled rect(box, EBLACKE)
Screen.draw.text (Eext_to show,

(20, text lines[line number]), color=GREEN)

o M
1

LT B B T O O O O O O O B« B &
[ ]

[ T T T T T
| % I = 1

FEFFRRAARAAAAEF
## START  ##
FEFFRRAARAAAAEF

o

o M
1

o

generate map )
clock.schedule interval (game loop, 0.03)

(TS B =]

Click at the end of Line 700
e EE S E T E T
## START ##
e EE S E T E T

()]

on
1 "

()]

()] ()]
A A A BT < BT

generate _map ()
clock.schedule interval (game loop, 0.0SH

(TS =]

Press ENTER.

Type the code you see on Line 701 of the screenshot below.
S S i
#%  START  ##
S S i

()]

[}
[}

()]
1

()] ()]
T AR A B A B A BT 4]

T AR =]

generate map ()
clock.schedule interval (game loop, 0.03)
01| clock.schedule interval (adjust wall transparency, 0.0EH

Line 701 will run the adjust_wall_transparency function every 0.5 seconds. This makes the wall

fade in or out as necessary as the player walks around the room.

Go to File > Save Now to save your code.



Final Code:

JF Eeeape

o ries, rasdow, w3t

GWCreSt_soom = 31 # mhart Tooe = 31

Sop lefc X =

1| LANDES,_SECTOR = randem.razding(l, 14}
LAMIES_ X = eazdom. randimr|l, 11)
LANIER Y = ramder, andize |3, 113

TILE_SIZE = 30

dc_lefr_i,
_iefr 3,
d6_rigat L,
_raghs_3,
| 1.
wl st back, & st bazt 3,
st back 2, & i batk 3,

imapes, spacesait_bak_4

1
*a0unti {imEgus.SpacesSAT_frost, iwages.spacesult_fromr 1,
. t 2, 4 Te_secms 3,

P g

| prever_dizectaos = maze=s
Ployer_fzeme = @

plager_ivage = FLAYER[plryer_directacs] [plaper_trave]
Player_offnet w, player_offacc y =9, O

it Lefr_smadoM, :_left i shbduw,
.apaceraic_laft_I_shadsv, imagea.apecesuic_laft 3 shedow,
.apaceraic_laft 3 ahedsw

"rightts [imbges,epssesuic_yignt shadow, AMAges,opsotsuln_right L shado,
inages , speoesULn_ YiguT_2_ahacks
imagea. spacesuit_saght 3 shadow, izam

L Eack atadaw, & =tt_back .

_bank_2_smadow, sic_hack_3_shadow,
imagen, apacesiiT back 3 shadow

azmanit_right 3 shasow

=amime; 1 e frome_shadow, ie_frome
tmages.apeceraic_fzomc I ahadow, image
msges. apacesaln_front_3_ahadow

. gromz i shadew,
sracwsuic_Frome 3 ahaciow,

atadoy = FIATER_SHADCW]®soun®] 18]

77| BILLARS = [
images.pallay, leages-pillar B8, iwages.pillax 80,
imagea.piilaz_eq, 413z 2

| WALl Tranaparescy frame = 0

| HAP_WIDTH = &
JRFTEEISAT = 13
3| MAFTSTZE = MAF WIDTH * MAP_HETGHT

e - v = arw kapeT, 9, 0,

| ourdoar_roems = range i1, 38)
0| £or pleniecasorora 1u rasge|l, 2514 fruoas L 1o 36 ase geaeseved Bere
GRME_MAT.agpandi [* fizaz aurface®, 13, 13, =11




| patnpte

widts, Tap mast?, muw. axter]
["Tes Trus, Ealse), ¥ rooe 3

["Ibe ==gineerimg Lau?, 13, 1§, Faiss, F

["Boodie Wisaite Sonzral®

["Meds Sorridoe®,
e T i
8 conmm,

Ea:
[hest sorxidor® 9,
[iniiicies seatrol

SEBATY theck oo mAp NDOYE To dneck deta enciy
1en(GAME_MAF) -1 = MAPF GIZE, "Mop miit amd GAME WP d40'T march®

Iteagur_floce, "The Fissr de amisy end clessti)

[iages.piller, ineges,full sesdow, *Tos wall is mmacsn asd 20ld7],
[irages.2oil, g ke 5 decerti Cr ab nan b Seaserziey,
[trages.pillaz_iow, leages alf anacow, "Il Well L3 ameom sud saidy,

Hockstelima, stecked With
[irages.cabiner, images,nalf_shadow,
4 smail Locksr, £ar atocing fesacoal 4

[izagen.duak Amager.half_smascw,
A comutar, Sas it be rim Dife siepect disgmowtican],
I 1 F Last_shadow, ° Flant, geewn hars

[uwe;.el:ncmm, imagesnals skadow,
EISOTr10a] SueTama Used COr [OWALLS
lizager.alactzzcall, imager_alf

1

ATinm

= apass emy,
! Carsful =n ime

5
[mnes.snxnb. Tmagea, sardh_snacow,
A space Lertuce.

® growiss here
Fpe

E mafecy fea:
2

401

[inages.door, images,doar_shadow, “The aitisck docs
fa, AT LEqUiTes TE perss
Linages dooz, images,dor_shatow,
- 2 cazat),

hadow, "3 lockea do

acoeaa card*],
lluwes do0r, inagee.door_shadow, "R locked door. It sesda * 4
+ TRIZNDC NRME + '3 acomas card”

5 logied goéx, It mesds = 4

Ix zemds =}

Iinages dace, smages.door_shadaw,
"3 focked dosr. To im cpemmd from Main Mieesso Comes
imgen.iior inaiiee.doss ehadi,

S sadneeEing ey,

norr
[imsges, zocke_lage, mwee,xnr.v large_ahadow,

% rock. Tts sazes wmrfz=a & Like a wietatena®, the s=cktf,

murfaoesy,

ey
il

o= 0F Che sotemTific
[images TobaT_

"k roboc aIm, saed for
Iimages.zsile:, tzages.zalf_ahacow,
[images.aink, - "R EaSk with Tesning weter®, "tSe tapal.
[mnes.mm tmages; globe_shacow,

ylghs'of che planen, I gencly giows fxem fmsdde]s
[L-weo.unume Zibicaliler

TIRALE.Y, *the weadimg sAchisen],

, " slaamemy zzbot,

roboER_abadce,

FATLON TSOn. aWRining wec-sp.°]
sbadcw, " Srafc in repaiz?l

[inages, GoMLo_fioor, Fes, “TAwas flooz — oo met wale oni®),




Timaces_drcne, Some, "A Saiivi
25 [images.wnecgy_ball, Nene, "An snesy Ball - degmsaisl ),
ELi [1mages.ensrgy badl2, Tuns, “An enecgy ball - dasgesous!
511 [1mages.ouNpUTEr, LNAQES.CONDUTEE_SBAGM,

SE e it ey, | o aeg iy jeon 9
S g st

Arcoar],

on aystens. "],

“trm Slipneecar

S0 Hlaspes pitiie '
“h iese ot siiaty butbie gum i flavosr M, Miskle quet),
+ " £og made of Fame, acroeg string asd plaacic,
antigcaw aspecsmenca,”, FEAYER MAHE + o's yoye"
[tzages. ths

"d 'plead of Fime,
23| 571 [images.nesdle.
241 ki EMAry neédis from
Tl Ehsdicdey e &
pmarizs o langrs o assing®, Tmesils ssd azmieetl,

nisce of sering®l,

24 plant®, "a oeotes mesdls

aky a1r cinvscert],

"a ‘smales al

sirgis of light on che:walis,”, "s merTertl,
de of Llight gRasvign & BAnTly

tare, " biz Pall cf wstsenl

Aj debjaratac fosd pouch. 1t nests waTer.ty s dry facd peokels
B8 [images.food, |
n fooc peoch.

e 3
783 comer-an u:-e. .Aunn‘y tetecen
: 7% mp3_player, (o,
;. with alltas Lafess tunes", *as HEF player®],
wiplesazion cragt. |

TH [images.pusiticaing aysten,

7 systeat, %8 poairionisg cove
fayie Toe miuns fo
=",

FCLEIDIZ. TADSLDL'Y,, TESaIpened scimmnr:
arel i1 [images.czedic, Houe,
1 a1 r.clr m Che: STATION'E TESAIDG SysTent

a Zard helongs to = + PLATEB_WRME, a3 access sazd”)
$01 [1nages.acecas oara
*This socess

an pocess sazanl,

dogess Saxd Leisegs to = + FEIENDZ MOME, = scosas sard¥]

items pleyer may_carry = lis:irasge(3d, 131)
# Wankeza pelow aze for f£loox, pressuze pad, sail, Towip Flocr
inens_player may_scasd_om = Ltens_playes nay cezry - [0, 35, %, %3]

seieL
5| 8% SCENERS
UM T

¥ Soemesy Sersrices shjwssa Gmat Swnne e Semvess e

# rooe numbers [[00]e0T mumber, ¥ powitios, M postTian]...j

1 MIY ¢

Lraw, e, 2

a3, s, !1, 133, 2,11, 133,1,08]. 147,5.21.
[47, 3,100, {47,8.8], 143,L.613,

A [[3T,@ 3], (41,491, (45,4.7]]

81 [[Ti2c6], [€,2,8], [13,1,13], Iii.é.l]-
[2€, 8,101, §20,1,1], (3%, 8.21, 137.4.410.

0: [0

AL [[1%4 11, 146,131,

321 [[48,2,2]; (42,241, 148,3,0], [48,3,9],
42,8, 41, 454,80 5440,

33 [[13,3,1], iu x,u.. 1:3,2,101, 145,310,

142,3,3

19‘.4\1.!]‘ i2%,5,315,

peL 3-5], L26,3,8], (3€,8,5], (16,9,2], 136,1,8],
1339, 00,

341
351

el
361 (M4,
[5,54]2
75 [148, 5,11,

1.
48,5,21; 145,53
42,7, 21, =, 0,21, (42,0,3], 14%,11.1], §4%,10,3)
B8 [[43,8 3] (6321 [835]0 (84,71, [8,3,80, [42,3,30]],
360 (13805100 17,3810 [Y6rtls (5050610 (56060,
6,281, [6,6 5], (451,410, [13,1,8], (13,5411,
WO LAY, 2030, 43,570, 143, 8,31, 192, 5,70,
B23,3,31, 183,3.1200.
Sl P, 0086, T,
13,3410, 133,1.5]
1 (et aly HEasl, De by 185,
[19,2,9], F53, 4,71, 134.1,81],
Lree,z,11, ! 1 l]. 148,3,3], IR.! a], IIO 1, l]. 142,1,111,
1030/, 114 L8471, (502 [Bad ey [ 02)0s
i1, rs.x e m,l.'m . e 10
11, 117,451, 174,41, 137, 4,50, (374,61, 127,4,70,
[lT, T,) 2 127,831, 127,98, 4],
[17,8,31, [IT,8,81, 117,871, 114,1,11]
451 (14,2210 (14,281 ms,u. 15,530, 145,001, 138.3,411,
01 (14 W11

2,3, 45,710

B, (35,1,10, 033,180, 033,2,10, 46,4,




Tacazazy_sean iiac[oi * ey
- sceneTy_ian_Liac{l) * (key = 1)
~ scenexy iven liacii] * chey = 31

= room in azawil, 26):# Rdd sazas acesesy in pleset locazices,
i zoum 1= 13 § Zkip zamm
acesery icem = random.ckolos([15, 3%, 38, 331}
scezsryeoo] = | [avensry itew, Eazcom,Tancizti2, 10),
doa. Tandint 12, 20311

Cre losps o add fasses S0 the planes wscfase sacms.

T zocm ocordinace A= range(d, 181

Tocm munber 15 {1, 2, 3 4 511 # 439 top feace

acazarylzcce snbesz] += (131, 0, resm coocdimatal]

= zocm sz i= (3, %, 13, 16, 11: § Rdd lefs Eance

acezery[zoom mambes] += (131, Tuen_coordinace, 011

for room mumber in {5, 10, 16, 20, 28]1 % Rdd riger fence
scesiryfroom munber] += {[31, focm coordinate, 13]]

azanazyi3i(-11 4 De lart Fance pasal in Boom 31
=menezy(22)(-1] # Delete last Fence pazel in Foom 29

sotw_sene, hazad_nep
3 Tof_left_y, well Trassgarency frame

Toom data = GANE_MAPicurzen:_rocw]

zocE_name = com_data (]

rooe_height = roca_dstall]

rooE_MidTE = rogm_Setal2]

floos_cype = gt_ficos_type (|

iF cuszest_coom in sanasil, 331G
bortoa_sdge =3 fanll

2 4s0al

range(2d, 26)1

= 1 fenll

T il

> 2a:

-1
1 funll
t Greate top lize of Tomm map,
comm mug={ [aids_sdge] ' Tocn_widih]
¥ Add misSle LiZes of zoom map (WeRI, floss t5 Fi11 whdih, waifi.
¥ L= rangsfrocn_heighs - 29
Toom_map. appesdiside_ssge]

+ [£3E0r_type] * |pode widck - 2) = fasds_woesf)
) Rdd bottoe lize o€ cion mm.
room map.appand | (bottom wdge] ¢ zoom widsh)

B hdd Sccrways.
ddle_tow = int|rocwm_heigze [ 31
= iz (race_wadth {21

t zoom_oatal4]s & 1 ekit &t right of chis reom
BAp[ELOA14 row] [roce widsh - 1] = floce Type

Toce_map[ziddle_rowti]{roms widss - 1] = Fizoz_cype

Tooe_map[iddis_row-1] (rose wigre - 1] = Fizos_type

Lf currest_xcom % MAE WIDTE = 1) # If Toom is noc om I=fc of map
xroom ta lefr = [ _MAF[ourrent room - 1)
# If oo o= the left has m TigEt exit, &34 left exst in Ebis zoom
:_iwrcld]:
room_wapimiddle_rowi{d] = floor o
room wepimiddle row = 1][6) = TIoox_type
roar_mapimiddla_row - 1[0} = Tleor T

f zoom Sees[3]: § T2 exizoac ik aF thia seom
Toom_map[0] jnuddle_colam] = fioar_type
zoom_map[0] musdle colams + 1] = flor_Tape
soon_map[0] Insddie_cotmm - 1] = flass_tipe

f GUrremt room <= MRE_JTZT — MAP_WIDTH: # I
Toon_kElow = GRHE ARP{ourrent )

: WIDTH]
# If toom below na & Top eNAT, aGd eRIT AT DOSTCB O Shis ces

come 1 pot’ on bobtow Tow

dg-d] [misate_colum] = flact_tvre

amamazyleuerent_soonis
soantry_saber = this_scensry(d]

soenery_y = chis_sceaEry[L}

soanazy e = This scsmsry[2]

omr_eap [smenesy_yl imcenesy_x] = asesery_nuzbar

tnage_fere = objeors]scenery =ushezd (3|
inage width = fmage Bere.get_widchil
fnage_widin in ciles = inc[image_wicts ¢ TILE_STZIE)

Gile_sumber [° range(l, image width in Giles}:
roon_map [acemery_y] [acesery w + TilZ nimber] = 15




ant (KIDTE

Baight = room heligsr ¢

+ DOF
T

* smars_zoo)l |
o Eaxt|"Tan ate Sare: * b Toom name. OF

1 playez N, player y, currest_toam
Eron ployer_x, TEon plaver 7
Playes_izags, playel_imige ahadew
ralsctad_item, item carrying, seergy
Playes cifset x, Flayer offasc y
player frame, pleyer dirsotion

it gewe owert

£ player_frame > Ot
playel_frame += 1
sime. aleep (0, 08|
i1 playes_fzwme = 3
Flaper_fzame = 0
player offser x = 0
player offsetTy =
Faave Flayws's cuzzent pomstisa
o4 player_a = plaver_z
224 playes_y = playes

2 nowe if key ia piessed

from_player_s = playes_z
fron_playecy = playery
player no+= 1
playes_dizection = ¢
Flayes_frame = L

1if beyomsd.lefe
fron_player ¥ = player_x
fron_player_y = player y
playis_x

from_player_x = player s
fron_player v = playery
nuyex_y =1

Bhv-x_fx-n- -1
£ Keyboard. oo

Erem player s = player w
fro pLAGSE Y = pLaSEY

player frape = L

# chaok for saiting cas eooe

t=p lefz_x = cancecx - 0.5 ° n__yuu it
Top_left_y = foefiTer_y - 0,6 * room pizel Reighch = 110

oenter_y = inc(HETEET / a) # Ce=ter of gane window

width = rocm 3 mn:n . rxr_l s}:{ % 5123 of rooe in prxela

#alir siope playes making disgsnel meremsnta

Lf playsr_z == foem wadeh: § thsough Sser an AIGET

#eock unachmdale (hazezs oovel
currest_goom += L
generata rap |

2 playwr_y == room teighe: § thecogh dsoc st
#elock.unazhedels (hezasd pove)

Flayes_y = 0 b s=tes st top

Flayes x = int|rooewidn [ 30 0 estes sk deor

&4 playes_y == -1z § thizugh docs ac TOF

#EI=TE unachecie (Reser move)
currest_toum —= MRAE WIDTH
gerscats_wap ||

& Bazece

Flayer x = int|zosewidh /) § estes ek deor

#avart_romi)
P

# If the play L anding Mmhue MY shoulis ', move (nu Baok.
£ xoon_map{player yi Lplayer xj o TAma_plApEr_EaY STAR
' Lp—l\vx_vllvh‘\:_x] =

et e
player_y = old_playes_y
Plapsr frame = @



T e i — i
Player_crfasc.x = -L + 10.33 % player_temel

£ player direociom == “left* yer_frame o O
Flnw offaec ¥ = l - 1% )5 * player :xml
£ oplayer dizecrics == “up® player Crame 3 O
,x.w offamc_y = L - |5.32 ¢ ux-uw_u—u

it player Sizecesos — “dowee asd player_frema > 05

Vlw affsec_y = 'l + 19.25 * player_ frawe)

R

P jazage, ¥, =)
FTzeRn bLITT

(Eop_iefs W + |x = TILE SIIE),

tep_fert_y + |y * TILE_SIZE) - smage.gmc_Besgmei))
1

AEaw_abadod (Lrage, K11

screen biin(
izage,
(Eop_terz_x & |z * TILE_SIEE),
op_isEE_y + Iy ¢ TILE SIZEY)
Ll

drwe_pLayes (16
Flayes_tmage = FLAYIR [playes_dicsctics) [playes_Erama]
ared_image |player_inage, playsr_y + player offsec y.
player_x = player_orfsec x|
Playsr_tmags_shactv = PLAVES_ SSRDOW[plapex_divectiom] [player_fraze)
Aras_abaso (Flayws_sma . Plavec_y + playes_cffast_y,
- x)

© aein
Lf gmme_cves:

8 Clear the gawe aress sres.

bom = Becti (D, 150}, (800, 6003
rzan.drav.2111ed_cect (box, FED)

Box = Bact ((0, DI, |800, Sop lafc y + froce hesgst - 1) 039f)
=cTeen, rface,aet_clipibo

floax_Eype = gec_tioox_type )

o=y 4o range(soon Baight)s § ay dowe floss ciles
fiz.x in Tange |Tome wists):
drsw_lmsge obiecta[F1o0x_typeiidh, Yo b
§ Bekt Lime eqables shadius To fall an Top 0% cbisots on fisar
f rome mapiy][n] 1o ivems player way stazd on)
drau_image (abiectelzzen mapiyv] 211120, ¥, %)

¥ Pzmasuire pad in oce 36 dm asaed hm
it cuzzasme _soom == ez
dzew_imageiohiecteida] (0], %, 11
ixagE_om_pad = roca_map(s] 173
14 ipage_an_pad >
draw_azage (cbiscta[image_o=_pad] 1], 3, 31

oo prmpa’oas g= mnotopiar e

. sange(zeem sesghe i
® 1o zangs{rooe widsh) s
sten neze = roon_wapiv) (x)
& Player camoor valk i 15E) 1F mArKs apaces wsed by wide obieona.
"¢ stwm haze ans_playes_mey_scand_co + [2321:
image = ﬁaj-::-[i:- Eaze] [0}

© tourrent_toom 1o owtdoor_tooms
ant ¥ == rom mesgns - 1
room map[vilel = 1) or )

Ln the feoee
trage = PILIARSIwall trarsperency frace]

Arew_imageiimage, ¥, ul

st nn:mu:u harsijl] 1o

+ § If cbjecc Bas @ anadow

smadon_widte = 1nc<1-llwe T _y namll ¢ TILE_STIE)
caz wides of dbzesto
= : wrideh) =
dzaw_sackee (ahadow smage, ¥, Eiz|

draw_shedow |skadow_Lmege, ¥, M)

iptayez_y == 71
s player |}

screen, surtace, ses_cispifune)

203
i

uat_wall trazsparency || i
=1 wall cransparency_Craze

e uuw-ry-mn--\em.-z
+ rote _wapirock height - 1) jplayer i

s wall_transparency frame < 441

wmll rranaparency frane += L b Fads wal: out.

} =1

T (rplayery < room hesght -
Toon_pap(Toon_ketgnt - 1] (pleyer_x) i= 1)
tranaparescy_frame = O30
wAll_teanspazemcy_frams —= L Fads wail an

Show_SesT [SeNs_to_show, Lime nusber)i
S5 gume,

Tews_tizes = [, 50]

BON = BeoT((l, TeXT_Linesiline nunker]i, |99, 351
BCYean.deaw. 1310 Taor box, BIACK)

mzzean.draw. caxt [tans_te_ssow,

120, nexs_Lineslize_nusber]}, color=GREEN)

Gazecace s
| Glcok, schiedile_incarval tgawe loop, 0.53)

| cloak, sohesale_inverval (adjudT_wall Trasaparendy, 0.05]




