
Part 5
Space Mission Directions

1. Navigate out to the Google Classroom for this class.

2. Locate the Space Mission Part 5 assignment.

3. We are now ready to start adding code to our file. Using your Windows button menu, find and 
launch your IDLE program.

IDLE is the integrated development environment associated with Python. It is made up of a code
editor where you type your code along with other helpful tools that allow you to write, save, 
and test run programs. 

IDLE is designed to recognize Python code, compile Python code, and provide basic debugging 
tips to programmers if there are problems with their code.



4. Your IDLE window should look something like this once it has launched.:

On Startup, IDLE will display the Python Shell, which can be used to give commands to the 
computer’s operating system. Since we are viewing the shell through IDLE and not the actual 
command prompt window, the commands that we type into the Shell will not communicate 
directly with our operating system. However, you can type similar commands in the Python Shell
directly from the Python program (not through IDLE) and, if you have permission to access the 
operating system’s commands, you can communicate with the computer’s operating system 
that way.

In IDLE, the shell is mainly used as a launching screen for other activities that we will do, like 
writing code for our game or debugging a file.



5. Go to File > Open and then browse in the Starting Files folder I gave you to find the escape 
python file that we have been working on.

6. Your escape.py file will open up.

7. Click at the end of Line 54.

8. Press ENTER twice.



9. Type the code you see on Lines 56 – 73 of the screenshot below. Ensure your indentation and 
capitalization match what is shown in the screenshot.

Line 56 will create another dictionary in your game called PLAYER_SHADOW. This is similar to 
the player dictionary. It contains animation frames for the astronaut’s shadow on the floor. As 
the astronaut moves, the shadow also changes shape. 

Lines 57 – 73 contains dictionary keys (“left”, “right”, “up”, and “down”) and the images for each
shadow position that the animation will iterate through.

10. Press ENTER twice.



11. Type the code you see on Line 75 of the screenshot below.

Line 75 creates a new variable called player_image_shadow. Its default value is equal to the first
item for the “down” entry in the PLAYER_SHADOW dictionary (the item with the index value of 
0). This variable will store the astronaut’s current shadow, like the player_image variable that 
we created earlier store’s the astronaut’s current image.

12. Press ENTER twice.



13. Type the code you see on Lines 77 – 80 of the screenshot below. Ensure your punctuation, 
indentation, and capitalization match what is shown in the screenshot.

Later in the chapter, we will add animation that fades out the front wall when you walk behind 
it so you can still see the astronaut. Line 77 creates the PILLARS list that lists different image 
frames the animation can move through (Lines 78 – 79) when we do this.

14. Press ENTER twice.



15. Type the code you see on Line 82 of the screenshot below.

Line 82 creates a new variable called wall_transparency_frame. This variable will remember the 
PILLARS image frame that is currently being displayed. It is set to the index value of 0, which will 
be the first item in the PILLARS list (in this case, the images.pillar).

16. Press ENTER twice.



17. Type the code you see on Lines 84 – 89 of the screenshot below.

Lines 84 – 89 will set up different variables named BLACK, BLUE, YELLOW, WHITE, GREEN, and 
RED. The numbers after the variables indicate the RGB color values for each variable. This sets 
the specific shade of each color you would like to use in your game.

Colors in Pygame are stored as tuples. A tuple is like a list whose content you can’t change, and 
it uses parentheses instead of square brackets. You’ve seen tuples used for coordinates when 
drawing on the screen. Colors are stored as three numbers that specify the amount of red, 
green, and blue in the color, in that order. The scale for each color ranges from 0 to 255. 

18. Ensure that your “MAP” comment runs on Lines 92 – 94 of your code. You may have to add or 
delete blank lines to make this happen.

19. Scroll and click at the end of Line 455.



20. Press ENTER twice.

21. Type the code you see on Lines 457 – 462 of the screenshot below. Ensure your indentation 
matches what is shown in the screenshot.

We now need to position the room on the screen.

The code you just typed starts by working out where the middle of the window in a room is. The 
HEIGHT and WIDTH variables store the window’s size in pixels. Dividing them by 2 gives us the 
coordinates of the center of the window. We store these coordinates in the center_y and 
center_x variables (Lines 457 – 458).

This program also works out how wide or tall the image of the room is in pixels (Lines 459 – 
460). This will be the width or height of the room in tiles multiplied by the size of a tile. The 
result is stored in the room_pixel_width and room_pixel_height variables.

To put the room image in the middle of the room, we want half the room to be to the left of the 
center line and half to the right. So, we subtract half the room width in pixels from the center 
line and start drawing the room there (Line 461). A similar calculation is made for the top_left_y 
variable, except we add 110 to the result because our final screen layout will use an area at the 
top of the screen as an information panel (Line 462). 



22. Click at the end of Line 467.

23. Press ENTER twice.



24. Type the code you see on Lines 469 – 470 of the screenshot below. Ensure your indentation 
matches what is shown in the screenshot.

Line 469 creates a new function called start_room in the GAME LOOP section of your code.

Line 470 will run the show_text method to display the text, “You are here: “ along with the 
room_name, taken from the GAME_MAP list. The 0 at the end of the line of code indicates the 
line number. We haven’t created the show_text method in our code yet, so this will make more 
sense later.

25. Scroll and select Lines 583 – 633 (the entire “EXPLORER” section of your code).



26. Press BACKSPACE to delete this entire section. We won’t need it anymore.

27. Type the code you see on Lines 583 – 592 of the screenshot below. Ensure your indentation 
matches what is shown in the screenshot below.

Lines 583 – 585 create a new section of code, called DISPLAU.

Line 587 creates a new method called draw_image. This method will require the image we want 
to draw and the and the y and x tile positions of the object in the room whenever it is called. 
The function will work out where on the screen to draw the image (the pixel position) based on 
the tile position in the room. 

Line 588 - 592 will utilize the screen.blit command to blit the image at the location specified.

28. Press ENTER twice.



29. Type the code you see on Lines 594 – 599 of the screenshot below. Ensure your indentation 
matches what is shown in the screenshot.

Line 594 creates a new function called draw_shadow. This function will also require the image 
you want to use and the x and y tile positions when it is called.

Lines 595 – 599 will utilize the screen.blit command to blit the image at the location specified.

The draw_shadow() function is very similar to the function for drawing an image, except that 
the image’s height is not subtracted when calculating its onscreen position. This is what places 
the shadow below the main image. 

30. Press ENTER twice.



31. Type the code you see on Lines 601 – 607 of the screenshot below. Ensure your indentation 
matches what is shown in the screenshot.

Line 601 creates another new function called draw_player. This function will draw the astronaut.

First, it puts the correct animation frame into the player_image variable (Line 602). 

Lines 603 - 604 then uses the draw_image function that we created on Line 587 to draw the 
astronaut’s image. The draw_image function requires the following arguments:

 The variable player_image, which contains the image to draw.
 The result after adding the global variables for player_y and player_offset_y. This is 

the y position in tiles, which might include a decimal part.
 The result after adding player_x and player_offset_x for the x position in tiles. 

Lines 605 – 607 use a similar code to draw the player’s shadow: the correct animation frame 
from the PLAYER_SHADOW dictionary is put into the player_image_shadow variable. Then, the 
draw_shadow function is used to draw it. The draw_shadow function uses the same tile 
positions as the draw_image function. 

32. Press ENTER twice.



33. Type the code you see on Lines 609 – 625 of the screenshot below. Ensure your indentation, 
punctuation, and line spacing matches what is shown in the screenshot.

Line 609 creates a new function called draw.

Line 610 will check to see if the game_over variable is equal to True. If so, then Line 611 contains
a return statement that will exit out of this particular block of code and skip down to the next 
function. This block of code doesn’t need to run if the game is over.

Line 613 contains a comment.

Line 614 begins the process of clearing the game arena, where the space station will be drawn. 
It does this by drawing a big red rectangle, wiping out the previous screen display. The areas as 
the top and the bottom that give the player information are separate, so they are not changed.

There are two steps for putting a rectangle on the screen. First, you create the shape using a 
Pygame object called Rect. On Line 614, we create a rect object called box. The object is placed 
at the x and y coordinate location of 0 and 150 and is 800 pixels wide by 600 pixels tall.

Line 615 will draw the filled rect object named box on the screen, and will fill the rectangle with 
the color numbers saved in the RED variable. These numbers are the RGB color values we 
specified earlier.



Line 616 creates another rect object called box. This object is created after the previous rect 
object is drawn so that we overwrite the coordinates of the first rect object with the coordinates
of the second. The second rect box object will have an x and y location of 0, 0. It will be 800 
pixels wide and whatever height is appropriate for the current room the player is in.

You can also use the Rect shape to create a clipping area. This is like an invisible window 
through which you view the screen. If the program draws something outside the window, it 
can’t be seen. Line 617 sets up a clipping area that’s the height of the room to stop the player’s 
shadow from spilling out of the bottom of the game when they’re in the front doorway.

Line 618 creates a variable called floor_type. This line will run the get_floor_type() method and 
store the result in the floor_type variable on Line 618.

The room is drawn in two stages. First, the program draws the floor tiles and anything that the 
player can walk on. Drawing them first enables scenery, the player, and shadows to be drawn on
top of them. This solves the problem of black holes appearing under scenery, because there will 
be floor tiles in those spaces before the scenery is drawn. 

Lines 620 – 621 create “for” loops that will loop for each y coordinates and x coordinate in the 
room. 

Line 622 executes the draw_image function that will access the objects list based on the 
floor_type of the room that you calculated on Line 618. This will draw the appropriate floor type
image on the screen at the appropriate y and x location (whatever location is currently being 
iterated through in the loop).

Line 623 contains a comment.

Line 624 contains an if function that will check to see if that particular y and x coordinate in the 
room_map contains items that the player is allowed to stand on.

If this is true, then Line 625 executes the draw_image function again to access the objects list for
that particular y and x coordinate and returns the first item in the list, which is the image of that 
particular object. It will generate the item at the appropriate y and x position.

34. Press ENTER twice.



35. Type the code you see on Lines 627 – 650 of the screenshot below. Ensure your indentation, 
punctuation, and line spacing match what is shown in the screenshot.

Line 627 contains a comment.

Line 628 contains an if function that checks to see if the value of the current_room variable is 
equal to room 26.

If it is, Lines 629 – 632 will execute.

Line 629 will execute the draw_image function to draw the floor pad image (item #39 in the 
objects list, the first item in the list is the image associated with the floor_pad). 8 is the y tile 
location for the image and 2 is the x tile location.

Line 630 creates a variable called image_on_map and sets it equal to be the y and x tile 
coordinate of 8 and 2 on the room_map.

Line 631 checks to see if the image_on_pad variable is greater than 0. If it is, it will draw the 
floor pad image at the proper tile location (Line 632).



Line 634 begins the second stage of drawing the room. The program will add scenery in the 
room, including shadows, using new loops that begin on Line 634. Because these loops come 
after the floor for the whole room has been drawn, the shadows will be drawn on top of the 
floor tiles and items on the floor. The shadows are transparent, so you can still see the object 
underneath the shadow. 

Beginning on Line 641, the program begins drawing the transparent front wall.

When the program is drawing the front row of the room (when the y loop equals room_height –
1), it checks whether it needs to draw a semitransparent wall instead of the solid wall object 
taken from the room map. The semitransparent wall is used if the player is standing behind it.

On the planet surface, the program makes the whole wall transparent. Inside the space station, 
a transparent wall panel is used only if its not in one of the bottom former positions. The 
corners always use a solid wall panel. The reason is that it loops odd if you see the solid edge 
wall start in the second frow from the bottom.

Later one, we will add the code to animate the transparency on the wall by changing the 
number in wall_transparency_frame. You won’t see the semi-transparent wall yet in the game.

36. Press ENTER twice.



37. Type the code you see on Lines 652 – 669 of the screenshot below. Ensure your indentation, 
punctuation, and line spacing match what is shown in the screenshot.

Line 652 draws the player on top of the floor.

Line 654 will check to see if the current object being drawn has a shadow.

If it does, Line 655 creates a variable called shadow_image and sets its value to be equal to the 
second item in the objects list for the particular item being drawn.

Line 656 contains a comment.

Lines 657 – 658 check to see if the object has a half_shadow or full_shadow, which would fill 
half a tile or a whole tile, respectively. These two standard shadows are used with block items 
(like electrical units and walls) that don’t need a distinctive shadow outline. The program checks 
whether the shadow_image is in a list that contains those two standard images.

If the shadow is one of the standard images, the program then works out how wide the shadow 
should be in tiles. That is calculated by taking the width of the object casting the shadow and 
dividing it by the width of a tile (30 pixels).



The program then creates a loop to draw the standard shadow images, using the variable z. It 
starts at 0 and runs until the width of the shadow minus 1. That’s because a range leaves out the
last item. The z values are added to the x position from the main loop and are used to draw the 
shadow tiles. 

If the shadow image is not one of the standard shadow images, the program will execute the 
draw_shadow function using the shadow_image from the objects dictionary and the current u 
and x tile location.

Line 666 will check to see if the player_y coordinate is equal to the y location that is currently 
being iterated through in the “for” loop that starts on Line 634. If this is true, the draw_player() 
function will execute (Line 667) to draw the player image. By drawing the player image after all 
the floor tiles and scenery, the player image will be placed on top.

Line 669 turns off the clipping area that was set earlier.

38. Press ENTER twice.

39. Type the code you see on Lines 671 – 677 of the screenshot below. Ensure your indentation and 
line spacing matches what is shown in the screenshot below.

Line 671 creates another function called adjust_wall_transparency.

Line 672 converts the wall_transparency_frame to a global variable so that this function is able 
to access and modify the value of the wall_transparency_frame variable.

If the player is standing behind the wall, the flowing statements are true:
 Their u position will be equal to room_height-2. 
 There is a piece of wall in the bottom row of the room that is in line with the 

player’s x position.



If the player is behind the wall (Lines 674 – 675) and the wall transparency is not set to 
maximum (Line 676), the wall transparency is increased by 1, making the wall more transparent 
(Line 677)

40. Press ENTER twice.

41. Type the code you see on Lines 679 – 682 of the screenshot below. Ensure your indentation 
matches what is shown in the screenshot.

If either of the following is true, it means the player isn’t hidden by the wall:
 Their y position is less than room_height – 2. The player can be seen, at least in part,

if they’re farther back in the room.
 There is not a piece of wall in the bottom row of the room in line with their x 

position.

In these cases, if the wall transparency is set to more than the minimum, it’s reduced by one.

42. Press ENTER twice.



43. Type the code you see on Lines 684 – 691 of the screenshot below. Ensure your indentation, 
punctuation, and line spacing match what is shown in the screenshot.

Line 684 creates another method called show_text.

Line 685 checks to see if the game_over variable is set to True. If so, Line 686 contains a return 
statement to exit out of this block of code and skip down to the next function. This code doesn’t 
need to execute if the game is over.

The line number will be either 0 for the top row or 1 for the second row, which is reserved for 
important messages. When the function is called, the message is put into the variable 
text_to_show and the row number goes into the line_number position.

We use a list called text_lines to remember the vertical positions (in pixels) of the two lines of 
text (Line 687). 

Line 688 will define a box at the x-coordinate of 0 and the y-coordinate equal to the 
line_number specified when the function is called. The width of the rectangle will be 800 and 
the height is 35 pixels. 

Line 689 fills the rectangle object with black to clear the row of text before the new message is 
drawn.

Finally, we use the screen.draw.text() function in Pygame to put the text on the screen. This 
function takes the text, the text’s x and y position, and the text color. The position numbers go 
inside parentheses.



The x position is 20 pixels from the left and the vertical position is taken from the text_lines list, 
using the number in line_number as the list index.

44. Press ENTER three times. Ensure your “START” comment runs on Lines 695 – 697.

45. Click at the end of Line 700.

46. Press ENTER.

47. Type the code you see on Line 701 of the screenshot below.

Line 701 will run the adjust_wall_transparency function every 0.5 seconds. This makes the wall 
fade in or out as necessary as the player walks around the room.

48. Go to File > Save Now to save your code.



Final Code:












