
Part 3
Space Mission Directions

1. Navigate out to the Google Classroom for this class.

2. Locate the Space Mission Part 3 assignment.

3. Click on the, “Chapter 6 Scenery Code to Copy/Paste” file that is attached to the assignment.

4. You will want this file later on in the exercise. Keep it handy.

5. We are now ready to start adding code to our file. Using your Windows button menu, find and

launch your IDLE program.

IDLE is the integrated development environment associated with Python. It is made up of a code

editor where you type your code along with other helpful tools that allow you to write, save,

and test run programs.

IDLE is designed to recognize Python code, compile Python code, and provide basic debugging

tips to programmers if there are problems with their code.

6. Your IDLE window should look something like this once it has launched.:

On Startup, IDLE will display the Python Shell, which can be used to give commands to the

computer’s operating system. Since we are viewing the shell through IDLE and not the actual

command prompt window, the commands that we type into the Shell will not communicate

directly with our operating system. However, you can type similar commands in the Python Shell

directly from the Python program (not through IDLE) and, if you have permission to access the

operating system’s commands, you can communicate with the computer’s operating system

that way.

In IDLE, the shell is mainly used as a launching screen for other activities that we will do, like

writing code for our game or debugging a file.

7. Go to File > Open and then browse in the Starting Files folder I gave you to find the escape

python file that we have been working on.

8. Your escape.py file will open up.

9. Click at the end of Line 25.

10. Press ENTER twice.

11. Type the code you see on Line 27 of the screenshot below.

Line 27 creates a new variable called TILE_SIZE. This variable’s value is set to 30.

12. Scroll and click at the end of Line 230.

13. Press ENTER three times.

14. Navigate to the code document you were given on Google Classroom.

15. Select all of the text in the document, copy it, and then paste it starting on Line 233. It should
paste code on Lines 233 – 277.

The code above contains the scenery dictionary, which describes the scenery in each room.
Scenery is equipment that stays in the same place throughout the game and includes furniture,
pipes, and electronic equipment.

Our scenery dictionary will use the room numbers as the key. Each scenery item is listed in the
scenery dictionary, sorted by room number. For each room number, the dictionary stores a list,
with a square bracket at the start and end of it. Each item in that list is another list that tells the
program where in the room to put each scenery object.

First in the list is the object number. This is the same as the number that is used as the key in the
objects dictionary. For example, object number 5 represents a table (object number 5 in the
objects dictionary).

The second two numbers represent the object’s x and y position in each room.

The back wall is usually in row 0, so we will typically start by placing objects at row 1 for the y
position. The largest useful number (on the y-axis) will be the room height minus 2 – we subtract
1 because the map positions start at 0 and subtract another 1 for the space the front wall
occupies.

The number in the x-position area tells the program how far across the room from left to right
the object should be. Again, a wall is usually in position 0. The largest useful number will
generally be the room width minus 2.

16. Click on Line 279. Ensure your code has blank lines on Lines 278, 279, 280, and 281, as shown in
the screenshot below.

17. Type the code you see on Lines 279 – 286 of the screenshot below. Ensure your indentation
matches what is shown in the screenshot.

This bit of code serves as a safety measure, called a checksum. It will check that all the data is
present and correct by making a calculation involving the data and then checking the result
against the correct answer. If there’s a mistake in the data you’ve entered, this bit of code wills
top the program until you fix it. This stops your game from running with bugs in it.

Line 279 creates a variable called checksum and sets its value to 0.

Line 280 creates another variable called check_counter and sets its value to 0 as well.

Line 281 begins a “for” loop that will run for each dictionary key and room_scenery_list item in
the scenery_items dictionary list.

Line 282 begins a nested “for” loop that will run on each scenery item in the list for each room.

Line 283 begins a function that will multiply the first scenery item in the list by the key for that
scenery item. Line 284 will add 1 to the key number and multiply the second scenery item in the
list by that new number. Line 285 will add 2 to the key number and multiply the third scenery

item in the list by that new number. The total of all of these calculations will be added to the
checksum value.

Line 286 will add 1 to the check_counter variable’s value.

18. Press ENTER.

19. Type the code you see on Lines 287 – 290 of the screenshot below. Ensure you type the code all
the way at the left margin, as shown.

Line 287 will print the value of the check_counter variable along with the text, “scenery items”.

Line 288 will use the assert function to check that the program has the right number of data
items. Again, remember an assert statement is used to continue to execute the code if the given
condition evaluates to True. In this case, if Line 288 (check_counter == 161) evaluates to true,
that means that we have the appropriate number of scenery items in our list and have not made
an error. If this statement evaluates to False, the execution of the game code will stop and the
game will not run. The Error Text included at the end of Line 288 will also display.

Line 289 uses a similar assert function to check that the checksum value is 20095. This is the
number that the checksum should be equal to if we’ve included all scenery items in our data. If
the number does not equal this, the execution of the game code will stop and the error text
included at the end of Line 289 will display.

Line 290 will print the text, “Scenery checksum: “ along with the value of the checksum variable,
converted to a string.

20. Press ENTER twice.

21. Type the code you see on Lines 292 – 296 of the screenshot below. Ensure your indentation
matches what is shown in the screenshot.

Line 292 will begin a block of code that will add random scenery to the room. For each room,
the random.choice() function chooses a random scenery item from items number 16, 28, 29,
and 30 (shrub, large rock, small rock, and a crater). Remember rooms 1 – 26 are outdoor rooms
outside the space station.

We leave Room 13 empty (Line 293) so that your character in the game has an empty space on
the planet’s surface (room 13) with no scenery objects.

Line 295 also adds a new entry to the scenery dictionary for the room. This entry contains the
random scenery item and the random y and x positions for that item. The y and x positions place
the item inside the room but not too near to the edge of the room.

After Lines 295 and 296 run, our scenery dictionary will contain information about the scenery in
every room.

22. Press ENTER twice.

23. Type the code you see on Lines 298 – 305 of the screenshot below. Ensure your indentation
matches what is shown in the screenshot.

Line 298 contains a comment.

Line 299 begins a block of code that will add fences to the rooms. All the place surface locations
are 13 tiles high and 13 tiles wide, so we can use one loop (Line 299) to add the top, left side,
and right side fences (Lines 300 – 305) to the appropriate rooms. Then, we will add the fences to
the scenery dictionary’s list of scenery items and item y and x-coordinate locations for that
particular room.

24. Press ENTER twice.

25. Type the code you see on Lines 307 – 308 of the screenshot below.

We don’t want the side fence panels where the outside area joins the space station wall. The
bottom-left corner of the room should be wall, so there shouldn’t be a fence panel here. The
loops we just used added a fence panel here, though.

Lines 307 and 308 will use the del function to delete the last item of scenery added to Room 21
and 25. The “-1” code is a programming shortcut for referring to the last item in a list.

26. Ensure that Lines 309 – 310 are blank and that your “MAKE MAP” comment begins on Line 311,
as shown in the screenshot below. You may need to add or delete blank lines as necessary.

27. Scroll and click at the end of Line 379.

28. Press ENTER twice.

29. Backspace your insertion point twice to line it up with the previous “if” statements on Lines 368
and 373.

30. Type the code you see on Lines 381 – 386 of the screenshot below. Ensure your indentation
matches what is shown in the screenshot.

Line 381 will check whether there’s an entry for the current room in the scenery dictionary. This
check is essential because some rooms in our game might not have any scenery, and if we try to
use a dictionary key that doesn’t exist, Python will stop the game with an error.

Line 382 will begin a loop that will cycle through scenery items for the rom and copies them into
a list called this_scenery. The first time through the loop, this_scenery contains the list for the
first scenery item. The second time, it will contain the list for the second item, and so on until it
reaches the final scenery item for the current room.

Each scenery item has a list containing its object number, y position, and x position. The
program extracts these details from this_scenery using the index numbers and puts them into
variables called scenery_number (Line 383), scenery_y (Line 384), and scenery_x (Line 385).

Now the program has all the information it needs to add the scenery item to room_map. You
might remember that room_map stores the object number of the item in each position in the
room. It uses the y position and x position in the room as list indexes. This program uses the
scenery_y and scenery_x values as list indexes to put the item scenery_number into room_map
(Line 386).

31. Press ENTER twice.

32. Type the code you see on Lines 388 – 390 of the screenshot below. Ensure your indentation
matches what is shown in the screenshot.

If all our objects were one tile wide, that is all we would need to do. But some objects are wider
and cover several tiles. For example, a wide object positioned in one tile might cover two or
more tiles to its right, but at the moment, the program only sees it in that one tile.

We need to add something to room_map in those additional spaces so the program knows the
player can’t walk on those tiles. I’ve used the number 255 to represent a space that doesn’t
have an object in it but also cannot be walked on. Why the number 255? It’s a large enough
number to give you space to add many more objects to the game if you want to, allowing for
254 items in the objects dictionary.

First, we need to figure out how wide an image is so we know how many tiles it fills. We use
scenery_number as the dictionary key to get information about the object from the objects
dictionary. (Line 388). We know the objects dictionary returns a list of information, the first item
of which is the image. So we use the index 0 to extra the image and put it into the variable
image_here.

Then we can use the program to find out the width of animage by adding the get_width()
function after the image name (Line 389). We put that number into a variable called
image_width.

Because we need to know how many tiles the image covers, Line 390 divides the image width (in
pixels) by the tile size (in this case, 30 pixels) and makes it an integer (whole number). We must
convert the number to an integer because we’re going to use it in the range() function here
shortly. The range() function will only work with whole numbers.

33. Press ENTER twice.

34. Type the code you see on Lines 392 – 393 of the screenshot below. Ensure your indentation
matches what is shown in the screenshot.

If an image is 90 pixels wide, Line 390 will divide the image pixel size by the tile size (30) to store
the result, 3, in the image_width_in_tiles variable. Then, Line 392 will create a loop that counts
to 2 using the range() function. Remember, we give it a range of 1 to the image_width_in_tiles
variable (which is 3), so that would result in the loop looping twice, in this instance.

We add the loop numbers to the x position of the object, and those positions in the room_map
are marked with the number 255 (Line 393). Large objects that cover three tiles now have 255 in
the next two spaces to their right.

35. Ensure that your “EXPLORER” comment begins on Line 397, as shown in the screenshot below.
You may need to add or delete blank lines.

36. Comment two “##” symbols at the beginning of Lines 405 – 410 to make these lines inactive in
your code.

Placing a comment at the beginning of these six lines will make this part of the code inactive.
This would be the same thing as deleting these lines from your code entirely. However, we may
want to reference back to this code later, so I chose to comment the lines instead of just delete
them.

37. Click at the end of Line 413, as shown in the screenshot below.

38. Press ENTER.

39. Type the code you see on Line 414 of the screenshot below.

We need to make a small change to the code that displays the room so it doesn’t try to draw an
image for a floor space marked with 255. That space will be covered by an image to the left of it,
and we don’t have an entry in the objects dictionary for 255. We don’t want the program to look
for an image labeled with the number 255 and then throw an error.

The “if” statement that you created on Line 414 makes sure that the instructions in the code
below it draw an object only if the object number is not 255.

40. Indent the code on Lines 415 – 418 as shown in the screenshot below.

41. Go to File > Save to save your game file.

