Alternating Interior Angles

REMEMBER

Alternating interior angles formed by a transversal and parallel lines are equal. When traced, they look like a \mathbb{Z} or \mathbb{Z} .

Example:

A

1

C

D

If line AB | CD, then in both cases above 21 & 22 are alternating interior angles and are equal.

1. In the diagram below, m \angle CFE = 5x and m \angle BEF = x + 20. If AB | CD, find the value of x.

4. In the accompanying diagram, parallel lines m and 1 are cut by transversal t. If m $\angle 1$ = (3x - 20) and the m $\angle 2$ = (x + 100), find the degree measure of $\angle 2$.

2. As shown in the accompanying diagram, CD \parallel EF and intersected by transversal \overline{GH} . If M \angle 1 = (4x + 30) and m \angle 2 = (2x + 50), find x.

5. In the accompanying diagram, AB | CD and EF intersects AB at G and CD at H. If m \(\alpha\) AGH is (4x - 10) and m \(\alpha\) GHD is 70, find the value of x.

3. In the accompanying diagram,

AB || CD, HG intersects AB at

E and CD at F. If m ∠CFE =

105 and m ∠BEF = (2x + 5), find x.

6. In the diagram below, m \angle AEF = (5x - 15) and m \angle EFD = (2x + 45). If AB || CD, find the value of x.

Corresponding Angles

REMEMBER

Corresponding angles formed by a transversal and parallel lines are equal. When traced, they look like an F, forward, backward or upside down.

If line $\overrightarrow{AB} \parallel \overrightarrow{CD}$, then in all cases above $\angle 1$ and $\angle 2$ are corresponding angles and are equal.

1. In the accompanying diagram AB | CD and are intersected by GH at points E and F respectively. If m \(\alpha \) AEG = (3x + 5) and m \(\alpha \) CFE = 95, find x.

4. In the accompanying diagram, transversal RS intersects parallel lines XY and WZ at E and H, respectively. If m 2 HEY = 81, what is the m 2 ZHS?

2. In the accompanying diagram, CL || EF and is interesected by transversal GH. If m $\angle 1$ = (2x + 20) and m $\angle 2$ = (x + 40), what is the degree measure of $\angle 2$?

5. In the diagram below, m \angle EGB = (3x + 20) and m \angle GHD = (2x + 40). If AB \parallel CD, find the value of x.

3. In the diagram below, $\overrightarrow{AB} \parallel CD$. If m $\angle 1 = (6x - 30)$ and m $\angle 2 = (3x + 15)$ find the number of degrees in m $\angle 1$.

6. In the accompanying diagram,

XY || WZ and meet transversal AB in points R and P respectively.

If m Z YRP = 120 and m Z ZPB = 4x - 20, find the value of x.

Interior Angles on the Same Side of the Transversal

REMEMBER

Examples:

A _______B
C _______D

If line AB \parallel CD, then in both cases above \angle 1 and \angle 2 are interior angles on the same side of the transversal and add up to 180°.

In the accompanying diagram, line 1 is parallel to line m and they are intersected by transversal t. If m ∠ 1 = 42, find the measure of ∠ 2.

4. In the accompanying diagram,

AD || CD and intersects transversal

GH at points E and F respectively.

If m \(\times AEF = 124 \) and m \(\times EFC = (2x + 20) \) find the value of x.

2. In the diagram below, the m \angle 1 = (3x + 20) and m \angle 2 = (2x + 30). If AB \parallel CD, find the value of x.

5. In the accompanying diagram, AB \parallel CD and transversal EF intersects

AB at G and CD at H. If m \angle 1 = (4x + 50) and m \angle 2 = (x + 30), find the value of x.

3. In the accompanying diagram, line a is parallel to line b and they are intersected by transversal c. If m Z 1 = (4x - 10) and m Z 2 = 110°, find the value of x.

6. In the accompanying diagram, AB ||
CD and intersects transversal GH at points E and F respectively.
Name two pairs of interior angles on the same side of the transversal.

Angles and the Triangle

	-	•				_	_
ю	EI	w	-	M	н	•	ĸ
	-	V.	_				

Every triangle has three angles and the sum of the measures of the angles of a triangle is 180°.

Example: The measures of the angles of a triangle are represented by x, 3x, and (x + 60). Find the number of degrees in the measure of the smallest angle of the triangle.

$$x + 3x + x + 60 = 180$$

 $5x + 60 = 180$
 $5x = 120$
 $x = 24$ ans.

- 1. The degree measures of the angles of a triangle are represented by x, 2x, and 3x. Find the number of degrees in the smallest angle.
- 5. If the angles of a triangle are in the ratio of 2:3:5, how many degrees are there in the largest angle of the triangle?

- 2. In triangle ABC, m \angle A = x, m \angle B = (x + 10), and m \angle C = (3x + 20). What is the number of degrees in the measure of \angle A?
- 6. In triangle EDF, m \angle E = (x + 10), m \angle D = (3x + 30), and m \angle F = (5x + 50). How many degrees are there in \angle F?

- 3. If two angles of a triangle are complementary, what is the degree measure of the third angle?
- 7. Could two angles of a triangle ever be supplementary? (yes or no)

- 4. Two angles of a triangle are equal in measure and the third angle is 110°. Find the number of degrees in one of the two equal angles.
- 8. The three angles of a triangle are in the ratio of 5:6:7. Find the number of degrees in the smallest angle of the triangle.