

This lesson includes a video of crash test dummies in a vehicle collision and data about forces on vehicle occupants.

This may evoke heightened emotional states due to related traumatic events that teachers, students, and/or their families may have experienced. Please see the unit front matter, the teacher reference associated with this lesson, and the callouts in the *Teacher Guide* for guidance around how to support social and emotional needs as you move through this unit. Never ask students to share their personal experiences unless they

Valuatoor to do co

#### **Student Content Advisory**



In this lesson, we will use a simulation of a vehicle collision and analyze data about forces on vehicle occupants and likelihood of survival during a collision.

If needed, you can use strategies from the *Student Mindfulness Resource* handout.

If at any future point in the unit you find you need support, let your teacher or a trusted adult know how you are feeling.

Be aware that your teacher and/or your classmates may have experienced trauma related to this topic. Approach conversations about car crashes and car safety with respect, guided by your class's community agreements.

# Navigate

# With your class

Considering the evidence we assembled in our timelines, what other variables might help us understand how safety features affect safety in a collision?

# Navigate

A crash test dummy is a tool engineers developed to help them collect data from a vehicle collision.



#### With your class

What data would you want to collect from a crash test dummy to better understand how safety features can prevent injury?



Brady Holt, CC BY-SA 3.0

#### Make Predictions

# With your class



Develop a model showing the forces on a crash test dummy during a collision without a seat belt or airbag.





Slide P

#### **Plan an Investigation**



#### **Carry Out an Investigation**

# With a partner

Optimize for one variable at a time. Record your trials on the *Safety Optimization Investigation* handout.

# **Compare Findings**

# With your class



What was the highest likelihood of survival you achieved for your design of the seat belt and airbag for a vehicle colliding with a barrier at 25 mph?

## **Analyze Data**

# Individual Think Time

- What patterns do you see in these six attempts to optimize the safety features?
- What design decisions were made to optimize the likelihood of survival?
- What equation(s) from our Force and Motion Relationships poster might help us understand these patterns?

→ Be ready to share your ideas with the class.

## **Make Predictions**

# With your class



Use your thumb to take a poll:

Up = increase, Down = decrease, Side = no change

What impact would an increase in vehicle speed before the collision with a stationary barrier have on

- the peak net force (maximum) acting on the person during the collision?
- likelihood of survival?

#### Develop and Use a Model to Explain the Data

#### With your class



Rearrange the equation to isolate the two variables that we saw were not changing.



## Develop and Use a Model to Explain the Data

#### With your class



How does this version of the equation help explain the patterns we see in these graphs?



#### **Licensing Information**



Physics Unit P.3 Lesson 9 Slides. OpenSciEd. CC-BY-NC 4.0

Visit this page for information about the license and this document for information about the proper attribution of OpenSciEd materials.