# Warm Up



- 1. What could be causing the land to move or crack?
- 2. Does land only move and crack during an earthquake, or could it happen when or where there is no perceptible shaking?

#### Slide B

#### **Consider Vectors**



#### Individual Think Time

Analyze the Plate Motion map.



USGS, Scott Nash

What do the arrows represent?
Why are some arrows longer than others?

→ Be ready to share your ideas with the class! Slide C

### **Analyze Plate Motion Data**



#### **Interpret Data**

# **Turn and Talk**

Why might a plate that we are living on appear to us to be stable, even though it is moving at a scale of a few centimeters per year?

→ Be ready to share your ideas with the class!



# **Consider Scale of Changes**



- Choose an object in the room that is stable:
  - Under what conditions is it stable (not moving)?
  - Under what conditions is it not stable (moving)?
  - What if we changed the temperature in the room?
  - What if we left the object here for hundreds of years? Would it still be stable?

#### **Revise Ideas about Contact Forces**

Anytime 2 objects are in contact, they exert **contact forces** on each other. Let's make sense of how contact force interactions on *any* solid object might affect it.



Consider *any* piece of matter at *any* scale (e.g., a small piece of foam or a large plate).

What are all the different things that can happen to solid matter when contact forces in different directions are acting on it?

### **Orient to Force Measurement Scales**



# With your class

- What units does a spring scale measure?
- 2. What do you notice is different between your three scales?
- Which one is the easiest to pull?Hardest?



### Warm Up 10/24

You calculate that an object is being moved with a force of 10 N to the right and 45 N up

- Draw out the situation
- Which way is the object going to move? Why?
- What is the net force in the x (left/right) and y (up/down)?
- Is the object balanced or unbalanced?

#### Free Body Diagram and Net Force

- Free Body Diagram (FBD)
  - Arrows in the direction of the force
  - Labeled with the force amount and unit
- Net Force (Sum of Forces)
  - Seperate in the x and y
  - To the right and up is positive
  - To the left and down is negative
  - Answer with directions and unit
- Vectors
  - Direction, number and units

#### **Net Force**



#### Find the Net Force













# Mini Lab

- You and your group of 5-6 students will create situations listed on your page using the provided materials. You can create holes by piercing with the spring scale or pencil.
- You ARE NOT breaking the bubble wrap or stretching the holes, you will pull until the object moves or does not move.

### **Develop and Use a Model**

#### On your own

Create a free-body diagram to represent a stationary object with 3 contact forces acting on it in the horizontal direction (along the *x*-axis).

Do you think your free-body diagram is a reasonable model for explaining why the Caribbean plate appears to be stable (not moving)? Why or why not?



# Analyzing and Interpreting Data



# With your class



- What was the net force on the object initially, when it was stable?
- Why did adding or taking away a force make the object move?

What was the net force on the object when it reached a new stable state?

# **Update Personal Glossary**





O Vector

force
Newton (N)
magnitude
net force
balanced forces
unbalanced forces

# Navigate

In the first set of investigations we carried out, balanced forces on a stationary object appeared to produce no change in its motion. It remained stationary.

# Left Start

#### With your class

- If we keep increasing the magnitude of these forces acting on a solid object, what do you predict would happen to it?
- What additional investigations does this suggest we need to do next time?

#### **Licensing Information**



Physics Unit P.2 Lesson 2 Slides. OpenSciEd. CC-BY-NC 4.0

Visit this page for information about the license and this document for information about the proper attribution of OpenSciEd materials.