11/15

- 1. Afar Movement Assessment (20 minutes)
- 2. Introduction to Force Variables Labs (Groups of 2-3 students)

Navigate

Turn and Talk

- What were the main differences we observed in the motion of the plates?
- What forces do we think are acting on plates that could explain the motion we observed?

→ Be ready to share your ideas with the class!

Consider Plate Interactions

With your class

What is interacting with the plates to push or pull on them?

Model Forces Acting on Plates

With your group

Draw an initial model that shows your ideas about how these forces act on the plates to cause their motion. What would happen to a plate's motion if multiple forces were acting on it at the same time?

When you are ready... Round Robin (1 minute each)

Share your ideas, using the Plate Interactions Consensus Model poster to illustrate your points.

Considering Variables

With your group

What physical properties of the plates could cause differences in the forces acting on them?

What are some ways that we can change a variable to investigate its effect?

→ Be ready to share your ideas with the class!

Considering Variables

) With your group

How would the forces acting on a plate change if 1 of the plate properties were changed (increased/decreased)?

Develop 2 versions of the model: 1 where this property is larger, and 1 where this property is smaller.

→ Be ready to share these in a gallery walk!

Slide F

Forces on Plates Gallery Walk

Slide G

Make Sense of Our Models

With your class

- What do our models have in common?
- What are the differences between our models?

Considering Sliding Forces

JAR B

With your class

How could we use our hands to represent how the mantle can cause the crust to move? Slide I

Quantifying Friction

Slide J

Quantifying Friction

With your class

How could we model the forces on a book being dragged by a spring scale?

Slide K

Quantifying Friction

Turn and Talk

What forces are acting on the piece of foam?

How would we model them?

→ Be ready to share your ideas with the class!

Slide L

Quantifying Friction

Slide M

Quantifying Friction

Slide N

Quantifying Friction

Constant speed

Consider Friction on Different Objects

With your class

- What characteristics of an object might increase or decrease the force of friction acting on it?
- Do we think these characteristics could also affect the force of friction acting on the plates? Why or why not?

Slide P

Brainstorm Ideas for an Investigation

With your group

Which of the plate properties we have identified might affect friction forces specifically?

→ Be ready to share your ideas with the class!

Navigate: Develop a Hypothesis

$\Omega \sim \Omega \sim \Omega$	With your group
440	Your group will conduct an investigation
	to test 1 variable that could affect friction
	acting on a material.
	Complete this sentence in your science
	notebook to frame a hypothesis for the
	-investigation.
If	, then when we,
we will obse	erve
because	

Navigate: Revisit the Hypothesis

EEE	With your group Review your hypothesis fo the variable you will investigate.	r
If will observe	, then when we	, we because

Design the Investigation of Friction

With your group

How could we use these materials to investigate how plate characteristics might affect friction?

When you are ready... Round Robin (1 minute each)

Be ready to share (1) how you will manipulate, control, and measure your variables and (2) how data will be recorded.

Slide T

Carry Out the Investigation of Friction

Slide U

Make Sense of Our Results

Scientists Circle

Share your results with the class.

- Describe your data.
- What relationship do your data support?
- What was your conclusion about how your variable affects friction? Was this the same as your hypothesis?
- Does this agree or disagree with the data other groups have presented?

Slide V

Make Sense of Our Results

Left Left

With your class

Would a high force of friction acting on a plate make it speed up or slow down?

Connecting Friction and Plate Motion

With your class

- Where do we think plates are experiencing friction?
- How could we use our results from our *Friction Investigation* to help explain the plate motion that we have observed?

Modeling Friction and Plate Motion

With your group

Use your initial predictive models and your findings from the *Friction Investigation* to model the relationship between friction and mass, surface area, or texture. Slide Y

Navigate

Exit Ticket

Which other force(s) should we investigate that could help us explain why some plates change motion differently than others?

Licensing Information

Physics Unit P.2 Lesson 11 Slides. OpenSciEd. CC-BY-NC 4.0

Visit this page for information about the license and this document for information about the proper attribution of OpenSciEd materials.